Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Cancer Research to Benefit from Development of a Whole-Genome, Cancer-Specific Microarray

By BiotechDaily International staff writers
Posted on 14 Mar 2013
An agreement between a British biotech company and an American-based genomic research consortium paves the way for the development of a whole-genome, cancer-specific microarray.

The biotech company Oxford Gene Technology (Oxford, United Kingdom) will design the microarray for the Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA). The array will incorporate probes for over 500 cancer genes and 130 cancer-associated genomic regions for hematological and solid tumors. The aim is to improve cancer research through the accurate identification of DNA copy number changes, and loss of heterozygosity associated with different cancer types.

Oxford Gene Technology was chosen following the recent development and commercialization of its CytoSure Haematological Cancer +SNP Array, which targets the four common hematological cancers: chronic lymphocytic leukemia, multiple myeloma, myeloproliferative neoplasms, and myelodysplastic syndrome.

The CytoSure Haematological Cancer +SNP array combines long oligo array comparative genomic hybridization probes for superior copy number detection with fully research-validated single nucleotide polymorphism (SNP) content for accurate identification of loss of heterozygosity without concurrent changes in gene copy number. The array content has been optimized to target regions known to be important in hematological cancers while providing good backbone coverage. CytoSure Interpret Software, which accompanies all CytoSure arrays, is a powerful, easy-to-use package for the analysis of copy number variation (CNV) and SNP data. Innovative features enable the automation of data analysis workflows, minimizing the need for user intervention and maximizing the consistency and speed of data interpretation.

The Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA) was formed in August 2009 by a group of clinical cytogeneticists, molecular geneticists, and molecular pathologists, who were interested in applying microarray technologies to cancer diagnosis and cancer research. The mission of the consortium is to promote communication and collaboration among cancer cytogenomics laboratories. The specific goals are to (1) establish platform-neutral and cancer specific microarray designs for diagnostic purposes, (2) share cancer microarray data between participating institutions for education purposes, (3) create a public cancer array database, and (4) carry out multicenter cancer genome translational research. Today, the consortium has grown to include more than 300 members from over 150 organizations in the US, Canada, and in other countries.

“The use of microarray technology will substantially improve the facility of cytogenetics research laboratories to identify cancer,” said Dr. M. Anwar Iqbal, president of the Cancer Cytogenomics Microarray Consortium. “The Cancer Cytogenomics Microarray Consortium board appreciates the efforts of companies such as Oxford Gene Technology to making the Cancer Cytogenomics Microarray Consortium cancer array design available to the cytogenetics research community worldwide.”

Related Links:

Oxford Gene Technology
Cancer Cytogenomics Microarray Consortium



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.