Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

Cancer Research to Benefit from Development of a Whole-Genome, Cancer-Specific Microarray

By BiotechDaily International staff writers
Posted on 14 Mar 2013
ADVERTISEMENT
SARTORIUS AG
An agreement between a British biotech company and an American-based genomic research consortium paves the way for the development of a whole-genome, cancer-specific microarray.

The biotech company Oxford Gene Technology (Oxford, United Kingdom) will design the microarray for the Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA). The array will incorporate probes for over 500 cancer genes and 130 cancer-associated genomic regions for hematological and solid tumors. The aim is to improve cancer research through the accurate identification of DNA copy number changes, and loss of heterozygosity associated with different cancer types.

Oxford Gene Technology was chosen following the recent development and commercialization of its CytoSure Haematological Cancer +SNP Array, which targets the four common hematological cancers: chronic lymphocytic leukemia, multiple myeloma, myeloproliferative neoplasms, and myelodysplastic syndrome.

The CytoSure Haematological Cancer +SNP array combines long oligo array comparative genomic hybridization probes for superior copy number detection with fully research-validated single nucleotide polymorphism (SNP) content for accurate identification of loss of heterozygosity without concurrent changes in gene copy number. The array content has been optimized to target regions known to be important in hematological cancers while providing good backbone coverage. CytoSure Interpret Software, which accompanies all CytoSure arrays, is a powerful, easy-to-use package for the analysis of copy number variation (CNV) and SNP data. Innovative features enable the automation of data analysis workflows, minimizing the need for user intervention and maximizing the consistency and speed of data interpretation.

The Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA) was formed in August 2009 by a group of clinical cytogeneticists, molecular geneticists, and molecular pathologists, who were interested in applying microarray technologies to cancer diagnosis and cancer research. The mission of the consortium is to promote communication and collaboration among cancer cytogenomics laboratories. The specific goals are to (1) establish platform-neutral and cancer specific microarray designs for diagnostic purposes, (2) share cancer microarray data between participating institutions for education purposes, (3) create a public cancer array database, and (4) carry out multicenter cancer genome translational research. Today, the consortium has grown to include more than 300 members from over 150 organizations in the US, Canada, and in other countries.

“The use of microarray technology will substantially improve the facility of cytogenetics research laboratories to identify cancer,” said Dr. M. Anwar Iqbal, president of the Cancer Cytogenomics Microarray Consortium. “The Cancer Cytogenomics Microarray Consortium board appreciates the efforts of companies such as Oxford Gene Technology to making the Cancer Cytogenomics Microarray Consortium cancer array design available to the cytogenetics research community worldwide.”

Related Links:

Oxford Gene Technology
Cancer Cytogenomics Microarray Consortium



Channels

Drug Discovery

view channel
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).

Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins. Asparagine (N)-linked glycosylation... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.