Features Partner Sites Information LinkXpress
Sign In
Demo Company

Cancer Research to Benefit from Development of a Whole-Genome, Cancer-Specific Microarray

By BiotechDaily International staff writers
Posted on 14 Mar 2013
Print article
An agreement between a British biotech company and an American-based genomic research consortium paves the way for the development of a whole-genome, cancer-specific microarray.

The biotech company Oxford Gene Technology (Oxford, United Kingdom) will design the microarray for the Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA). The array will incorporate probes for over 500 cancer genes and 130 cancer-associated genomic regions for hematological and solid tumors. The aim is to improve cancer research through the accurate identification of DNA copy number changes, and loss of heterozygosity associated with different cancer types.

Oxford Gene Technology was chosen following the recent development and commercialization of its CytoSure Haematological Cancer +SNP Array, which targets the four common hematological cancers: chronic lymphocytic leukemia, multiple myeloma, myeloproliferative neoplasms, and myelodysplastic syndrome.

The CytoSure Haematological Cancer +SNP array combines long oligo array comparative genomic hybridization probes for superior copy number detection with fully research-validated single nucleotide polymorphism (SNP) content for accurate identification of loss of heterozygosity without concurrent changes in gene copy number. The array content has been optimized to target regions known to be important in hematological cancers while providing good backbone coverage. CytoSure Interpret Software, which accompanies all CytoSure arrays, is a powerful, easy-to-use package for the analysis of copy number variation (CNV) and SNP data. Innovative features enable the automation of data analysis workflows, minimizing the need for user intervention and maximizing the consistency and speed of data interpretation.

The Cancer Cytogenomics Microarray Consortium (New Orleans, LA, USA) was formed in August 2009 by a group of clinical cytogeneticists, molecular geneticists, and molecular pathologists, who were interested in applying microarray technologies to cancer diagnosis and cancer research. The mission of the consortium is to promote communication and collaboration among cancer cytogenomics laboratories. The specific goals are to (1) establish platform-neutral and cancer specific microarray designs for diagnostic purposes, (2) share cancer microarray data between participating institutions for education purposes, (3) create a public cancer array database, and (4) carry out multicenter cancer genome translational research. Today, the consortium has grown to include more than 300 members from over 150 organizations in the US, Canada, and in other countries.

“The use of microarray technology will substantially improve the facility of cytogenetics research laboratories to identify cancer,” said Dr. M. Anwar Iqbal, president of the Cancer Cytogenomics Microarray Consortium. “The Cancer Cytogenomics Microarray Consortium board appreciates the efforts of companies such as Oxford Gene Technology to making the Cancer Cytogenomics Microarray Consortium cancer array design available to the cytogenetics research community worldwide.”

Related Links:

Oxford Gene Technology
Cancer Cytogenomics Microarray Consortium

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.