Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

A Histone Demethylase Regulates Stem Cell Differentiation

By BiotechDaily International staff writers
Posted on 06 Mar 2013
A recent publication detailed how the protein Fbxl10 regulates the maturation process that takes place when an embryonic stem cell differentiates into a specialized, functional tissue cell.

Fbxl10 is a histone demethylase enzyme that removes a methyl group from lysine-4' and lysine-36' of the histone H3. Preferentially Fbxl10 removes methyl groups from trimethylated H3 lysine-4' and dimethylated H3 lysine-36' residues while it has weak or no activity for mono- or trimethylated H3 lysine-36'. Fbxl10 preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation.

In the paper published in the February 7, 2013, online edition of the journal Molecular Cell investigators at the University of Copenhagen (Denmark) found that to regulate stem cell maturation Fbxl10 directly recruits Polycomb Repressive Complex 1 proteins into CpG islands.

Polycomb-group (PcG) proteins are a family of proteins first discovered in fruit flies that can remodel chromatin so that epigenetic silencing of genes takes place. In humans, Polycomb Group gene expression is important in many aspects of development. Mouse mutants lacking PRC2 (Polycomb Repressive Complex 2) genes die as embryos while most PRC1 (Polycomb Repressive Complex 1) mutants are born alive but with anatomic rearrangements that cause them to die shortly after birth. In contrast, overexpression of PcG proteins correlates with the severity and invasiveness of several cancer types.

CpG islands are genomic regions that contain a high frequency of CpG sites. The "p" in CpG refers to the phosphodiester bond between the cytosine and the guanine residues, which indicates that the C and the G are next to each other in sequence, regardless of being single- or double-stranded. In a CpG site, both C and G are found on the same strand of DNA or RNA and are connected by a phosphodiester bond.

“Our new results show that this molecule is required for the function of one of the most important molecular switches that constantly regulates the activity of our genes. If Fbxl10 is not present in embryonic stem cells, the cells cannot differentiate properly, and this can lead to developmental defects,” said Dr. Kristian Helin, professor of health sciences at the University of Copenhagen.

Related Links:
University of Copenhagen




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.