Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

A Histone Demethylase Regulates Stem Cell Differentiation

By BiotechDaily International staff writers
Posted on 06 Mar 2013
Print article
A recent publication detailed how the protein Fbxl10 regulates the maturation process that takes place when an embryonic stem cell differentiates into a specialized, functional tissue cell.

Fbxl10 is a histone demethylase enzyme that removes a methyl group from lysine-4' and lysine-36' of the histone H3. Preferentially Fbxl10 removes methyl groups from trimethylated H3 lysine-4' and dimethylated H3 lysine-36' residues while it has weak or no activity for mono- or trimethylated H3 lysine-36'. Fbxl10 preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation.

In the paper published in the February 7, 2013, online edition of the journal Molecular Cell investigators at the University of Copenhagen (Denmark) found that to regulate stem cell maturation Fbxl10 directly recruits Polycomb Repressive Complex 1 proteins into CpG islands.

Polycomb-group (PcG) proteins are a family of proteins first discovered in fruit flies that can remodel chromatin so that epigenetic silencing of genes takes place. In humans, Polycomb Group gene expression is important in many aspects of development. Mouse mutants lacking PRC2 (Polycomb Repressive Complex 2) genes die as embryos while most PRC1 (Polycomb Repressive Complex 1) mutants are born alive but with anatomic rearrangements that cause them to die shortly after birth. In contrast, overexpression of PcG proteins correlates with the severity and invasiveness of several cancer types.

CpG islands are genomic regions that contain a high frequency of CpG sites. The "p" in CpG refers to the phosphodiester bond between the cytosine and the guanine residues, which indicates that the C and the G are next to each other in sequence, regardless of being single- or double-stranded. In a CpG site, both C and G are found on the same strand of DNA or RNA and are connected by a phosphodiester bond.

“Our new results show that this molecule is required for the function of one of the most important molecular switches that constantly regulates the activity of our genes. If Fbxl10 is not present in embryonic stem cells, the cells cannot differentiate properly, and this can lead to developmental defects,” said Dr. Kristian Helin, professor of health sciences at the University of Copenhagen.

Related Links:
University of Copenhagen




Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.