Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

European Collaborators Define Dermcidin's Mode of Action

By BiotechDaily International staff writers
Posted on 06 Mar 2013
A team of European molecular biologists have published the crystal structure and functional mechanism of the human antimicrobial peptide dermcidin.

Dermcidin (DCD) is a human antimicrobial peptide (AMP) that is constitutively expressed in sweat glands and secreted into sweat. By postsecretory proteolytic processing in human sweat, the precursor protein gives rise to several short DCD peptides varying in length from 25 to 48 amino acids and with net charges between minus two and plus two. Several DCD peptides show antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Candida albicans, Staphylococcus epidermidis, Pseudomonas putida, and methicillin-resistant S. aureus as well as rifampin- and isoniazid-resistant Mycobacterium tuberculosis. DCD-derived peptides are active under high-salt conditions and in a buffer resembling human sweat. These peptides have diverse and overlapping spectra of activity that are independent of the net peptide charge, and previous studies showed that DCD peptides interacted with the bacterial cell envelope and killed gram-negative bacteria without forming pores in membranes.

Investigators at the University of Edinburgh (United Kingdom), the Max Planck Institute for Biophysical Chemistry (Goettingen, Germany), the Max Planck Institute for Developmental Biology (Tübingen, Germany), and the University of Strasbourg (France) collaborated in the effort to define the mode of action of DCD at the molecular and atomic levels.

In the February 20, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) they presented the X-ray crystal structure as well as solid-state NMR spectroscopy, electrophysiology, and molecular dynamic simulations of this major human antimicrobial.

The results demonstrated that dermcidin formed an architecture of high-conductance transmembrane channels, composed of zinc-connected trimers of antiparallel helix pairs. Molecular dynamics simulations elucidated the unusual membrane permeation pathway for ions and showed adjustment of the pore to various membranes. Water and charged particles were able to flow uncontrollably across the membrane, eventually killing harmful microbes.

The authors predicted that their findings may form a foundation for the structure-based design of a new generation of peptide antibiotics.

Related Links:
University of Edinburgh
Max Planck Institute for Biophysical Chemistry
Max Planck Institute for Developmental Biology



Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.