Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Coating of "Self” Peptides Protects Nanoparticles from Macrophage Destruction

By BiotechDaily International staff writers
Posted on 05 Mar 2013
Image: Diagram of Macrophage Interaction: Macrophages are immune cell “border guards” that have evolved to eat all sorts of foreign microbes, but they also eat many particles that are intended for therapeutics and imaging. A “Minimal peptide ‘Passport’” attached to the particles provides recognition signals so that the particles are not eaten, thus improving delivery to diseased cells in the body (Photo courtesy of Mary Leonard, Biomedical Art & Design, University of Pennsylvania).
Image: Diagram of Macrophage Interaction: Macrophages are immune cell “border guards” that have evolved to eat all sorts of foreign microbes, but they also eat many particles that are intended for therapeutics and imaging. A “Minimal peptide ‘Passport’” attached to the particles provides recognition signals so that the particles are not eaten, thus improving delivery to diseased cells in the body (Photo courtesy of Mary Leonard, Biomedical Art & Design, University of Pennsylvania).
Nanoparticles coated with peptides derived from the human protein CD47 were protected from uptake and destruction by macrophages in a genetically engineered mouse model system.

The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of “self” molecules by signaling through the phagocyte receptor CD172a. CD47, which is found on almost all mammalian cell membranes, binds to the SIRPa macrophage receptor in humans.

Investigators at the University of Pennsylvania (Philadelphia, USA) used computers to design the smallest peptides from human CD47 (hCD47) that could perform the same function. They then synthesized these peptides and attached them to virus-size particles for intravenous injection into mice that had been genetically engineered to express a CD172a variant compatible with hCD47.

Results published in the February 22, 2013, issue of the journal Science revealed that the coating of “self” peptides delayed macrophage-mediated clearance of the nanoparticles, which promoted persistent circulation that enhanced dye and drug delivery to tumors.

"There may be other molecules that help quell the macrophage response," said senior author Dr. Dennis Discher, professor of chemical and biomolecular engineering at the University of Pennsylvania, "but human CD47 is clearly one that says, "Do not eat me. It can be made cleanly in a machine and easily modified during synthesis in order to attach to all sorts of implanted and injected things, with the goal of fooling the body into accepting these things as self."

Related Links:

University of Pennsylvania



Channels

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.