Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Coating of "Self” Peptides Protects Nanoparticles from Macrophage Destruction

By BiotechDaily International staff writers
Posted on 05 Mar 2013
Image: Diagram of Macrophage Interaction: Macrophages are immune cell “border guards” that have evolved to eat all sorts of foreign microbes, but they also eat many particles that are intended for therapeutics and imaging. A “Minimal peptide ‘Passport’” attached to the particles provides recognition signals so that the particles are not eaten, thus improving delivery to diseased cells in the body (Photo courtesy of Mary Leonard, Biomedical Art & Design, University of Pennsylvania).
Image: Diagram of Macrophage Interaction: Macrophages are immune cell “border guards” that have evolved to eat all sorts of foreign microbes, but they also eat many particles that are intended for therapeutics and imaging. A “Minimal peptide ‘Passport’” attached to the particles provides recognition signals so that the particles are not eaten, thus improving delivery to diseased cells in the body (Photo courtesy of Mary Leonard, Biomedical Art & Design, University of Pennsylvania).
Nanoparticles coated with peptides derived from the human protein CD47 were protected from uptake and destruction by macrophages in a genetically engineered mouse model system.

The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of “self” molecules by signaling through the phagocyte receptor CD172a. CD47, which is found on almost all mammalian cell membranes, binds to the SIRPa macrophage receptor in humans.

Investigators at the University of Pennsylvania (Philadelphia, USA) used computers to design the smallest peptides from human CD47 (hCD47) that could perform the same function. They then synthesized these peptides and attached them to virus-size particles for intravenous injection into mice that had been genetically engineered to express a CD172a variant compatible with hCD47.

Results published in the February 22, 2013, issue of the journal Science revealed that the coating of “self” peptides delayed macrophage-mediated clearance of the nanoparticles, which promoted persistent circulation that enhanced dye and drug delivery to tumors.

"There may be other molecules that help quell the macrophage response," said senior author Dr. Dennis Discher, professor of chemical and biomolecular engineering at the University of Pennsylvania, "but human CD47 is clearly one that says, "Do not eat me. It can be made cleanly in a machine and easily modified during synthesis in order to attach to all sorts of implanted and injected things, with the goal of fooling the body into accepting these things as self."

Related Links:

University of Pennsylvania



Channels

Drug Discovery

view channel
Image: Researchers have attached two drugs—TRAIL and Dox—onto graphene strips. TRAIL is most effective when delivered to the external membrane of a cancer cell, while Dox is most effective when delivered to the nucleus, so the researchers designed the system to deliver the drugs sequentially, with each drug hitting a cancer cell where it will do the most damage (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Anticancer Drug Delivery System Utilizes Graphene Strip Transporters

The ongoing search by cancer researchers for targeted drug delivery systems has generated a novel approach that uses graphene strips to transport simultaneously the anticancer agents TRAIL (tumor necrosis... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.