Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Antifreeze Proteins Block Growth of Ice Crystals by Binding Irreversibly

By BiotechDaily International staff writers
Posted on 28 Feb 2013
Antifreeze proteins (AFPs) bind irreversibly to ice crystals and prevent their growth even when no more protein is left in solution.

AFPs create a difference between the melting point and freezing point known as thermal hysteresis. The addition of AFPs at the interface between solid ice and liquid water inhibits the thermodynamically favored growth of the ice crystal, while ice growth is kinetically inhibited by the AFPs covering the water-accessible surfaces of the ice. Thermal hysteresis is easily measured in the lab with an instrument called a nanoliter osmometer.

Many organisms are protected from freezing by AFPs, which bind to ice, modify its morphology, and prevent its further growth. Since the initial discovery of AFPs in fish, they have also been found in insects, plants, bacteria, and fungi. These proteins have a wide range of applications in cryomedicine, cryopreservation, and frost protection for transgenic plants and vegetables. AFPs also serve as a model for understanding biomineralization, the processes by which proteins help form bones, teeth, and shells. Nonetheless, the mechanism of action of different types of antifreeze proteins is incompletely understood. Antifreeze proteins evolved independently many times with diverse structures and properties, even in closely related species. Although AFPs were discovered more than 30 years ago and have been studied extensively since then, it is not clear whether all AFPs block ice growth through a unified mechanism of action or if these diverse proteins have distinct binding properties. As measurements of the antifreeze proteins in contact with ice were elusive, this question had not been answered.

To elucidate some of these issues investigators at the Hebrew University of Jerusalem (Israel) and Ohio University (Athens, USA) prepared a fluorescently labeled version of the yellow mealworm (Tenebrio molitor) AFP. This protein is a hyperactive AFP with potency to arrest ice growth hundreds of times greater than that of fish or plant AFPs. Use of the labeled protein allowed for direct microscopic observation of protein-ice crystal interaction in a custom-designed, temperature-controlled microfluidic device.

Results published in the January 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that the binding of hyperactive Tenebrio molitor AFP to ice crystals was practically irreversible, and that surface-bound AFPs were sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings ruled out theories of AFP activity relying on the presence of unbound protein molecules.

Related Links:
Hebrew University of Jerusalem
Ohio University


comments powered by Disqus

Channels

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.