Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
BioConferenceLive

Apolipoprotein A-IV Stabilizes Glucose Metabolism in Diabetic Mouse Model

By BiotechDaily International staff writers
Posted on 04 Jun 2012
Apolipoprotein A-IV (apoA-IV), a protein manufactured by the small intestine during the digestive process, has been found to improve the ability of diabetic mice to control their glucose levels.

Investigators at the University of Cincinnati (OH, USA) worked with cultures of isolated pancreatic cells, with mice that had been genetically engineered to lack the gene for apoA-IV, and with KKAy diabetic mice.

They reported in the May 22, 2012, online edition of the journal Proceedings of the National Academy of Sciences of the USA that apoA-IV-treated isolated pancreatic islets had enhanced insulin secretion under conditions of high glucose but not of low glucose, suggesting a direct effect of apoA-IV to enhance glucose-stimulated insulin release. This enhancement involved cAMP (3'-5'-cyclic adenosine monophosphate) at a location distant from the point entry of calcium ions into insulin-producing beta cells.

Genetically engineered “knockout” of apoA-IV resulted in compromised insulin secretion and impaired glucose tolerance compared with wild type mice. Challenging mice lacking apoAI-V with a high-fat diet led to fasting hyperglycemia and more severe glucose intolerance associated with defective insulin secretion than occurred in wild type mice. Administration of exogenous apoA-IV to the “knockout” mice improved glucose tolerance by enhancing insulin secretion in mice fed either chow or a high-fat diet.

Injection of exogenous apoA-IV decreased blood glucose levels and stimulated a transient increase in insulin secretion in KKAy diabetic mice.

Senior author Dr. Patrick Tso, professor of pathology and laboratory medicine at the University of Cincinnati, said, “ApoA-IV behaves similar to an incretin - a gastrointestinal hormone causing an increased release of insulin after eating to combat the onset of elevated blood glucose. Two well-known incretins that have been used in the development of existing diabetes medications include gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1).”

"The problem with both of these incretins is that they are short-lived - lasting only for minutes - and are quickly inactivated by an enzyme,” said Dr. Tso. “They have also been linked to hypoglycemia, or low blood sugar, when administered when the body has a low glucose concentration. The challenge is to find something safer with a longer half-life.”

With its long (seven to eight hour) half-life apoA-IV may be a suitable therapeutic target for the regulation of glucose-stimulated insulin secretion and treatment of diabetes.

Related Links:
University of Cincinnati



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.