Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Enriched FAK Activity Protects Cardiomyocytes from Heart Attack Damage

By BiotechDaily International staff writers
Posted on 22 Mar 2012
Cardiovascular disease researchers have identified a protein in cardiomyocytes that when expressed at high levels protects heart cells from damage caused during myocardial infarction due to the sudden loss of oxygen.

Investigators at the University of North Carolina (Chapel Hill, USA) had shown previously that deletion of the enzyme focal adhesion kinase (FAK) exacerbated myocyte death following heart attack. FAK is a highly conserved, cytosolic, protein-tyrosine kinase involved in cell-cell and cell-matrix interaction and responsible for formation of the focal adhesion complex. It is widely expressed throughout development.

In the current study, the investigators examined the effect of enriched FAK activity on cardiomyocytes during and after heart attack (ischemia/perfusion) in a mouse model. To this end, they created a line of mice genetically engineered to express a highly active form of FAK (SuperFAK) in their cardiomyocytes.

They reported in the March 1, 2012, online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology that FAK activity in unstressed transgenic hearts was modestly elevated, but this had no discernible effect on anabolic heart growth or cardiac function. On the other hand, SuperFAK hearts exhibited a dramatic increase in FAK activity and a reduction in myocyte apoptosis and infarct size 24 to 72 hours following ischemia/perfusion.

Mechanistic studies revealed that elevated FAK activity protected cardiomyocytes from ischemia/perfusion-induced apoptosis by enhancing nuclear factor-kappaB (NF-kappaB)-dependent survival signaling during the early period of reperfusion (30 and 60 minutes). Moreover, adenoviral-mediated expression of SuperFAK in cultured cardiomyocytes attenuated H2O2 or hypoxia/reoxygenation-induced apoptosis. Blockade of the NF-kappaB pathway using a pharmacological inhibitor or small interfering RNAs completely abolished the beneficial effect of SuperFAK.

"This study shows that we can enhance existing cell survival pathways to protect heart cells during a heart attack," said senior author Dr. Joan Taylor, associate professor of pathology and laboratory medicine at the University of North Carolina. "We thought if we could activate FAK to a greater extent, then we could better protect those heart cells."

"I think folks could use this idea to exploit mutations in other molecules - by thinking about how to modify the protein so that it can be under natural controls," said Dr. Taylor. "Negative feedback loops are important because they "reset" the system."

Related Links:

University of North Carolina


Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.