Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Nanoparticle Gold-Filled Silicon Wafers Effectively Kill Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 02 Feb 2012
Heat generated when hollow gold nanoparticles embedded in silicon nanowafers were exposed to infrared light effectively killed breast cancer cells in vitro and in a mouse model.

Investigators at The Methodist Hospital Research Institute (Houston, TX, USA) created the highly efficient thermal transfer nanoparticles by confining gold nanoshells into nanopores of silicon microparticles. In the presence of infrared light at 808 nm, the gold-filled silicon particles heated up a surrounding aqueous solution by about 20 °C in seven minutes.

Hollow gold responds to near-infrared (NIR) light, which is able to penetrate deeply inside the body and which causes less damage to tissues compared to shorter wavelength light due to less absorbance by the tissue chromophores.

The investigators used human and mouse breast-cancer lines to test cell killing in vitro and the mouse model of 4T1 mammary tumor for in vivo studies. They reported in the January 3, 2012, online edition of the journal Advanced Healthcare Materials that the nanoparticles effectively killed cancer cells both in vitro and in the mouse model.

“Hollow gold nanoparticles can generate heat if they are hit with a near-infrared laser,” said first author Dr. Haifa Shen, assistant research member at The Methodist Hospital Research Institute. “Multiple investigators have tried to use gold nanoparticles for cancer treatment, but the efficiency has not been very good – they would need a lot of gold nanoparticles to treat a tumor. We found that heat generation was much more efficient when we loaded gold nanoparticles into porous silicon, the carrier of the multistage vectors.”

“The hollow gold particles we load into the porous silicon must be the right size and have the correct-sized space inside them to interact with the infrared light we are using,” said Dr. Shen. “But the wavelength of infrared we use will have to change depending on where the tumor is. If it is close to the skin, we can use shorter wavelengths. Deeper inside the body, we have to use longer wavelengths of infrared to penetrate the tissue. The hollow space of the gold particles must be modified in response to that. We are planning preclinical studies to study the technology's impact on whole tissues, breast cancer cells, and possibly pancreatic cancer cells. We would also like to see whether this approach makes chemotherapy more effective, meaning you could use less drugs to achieve the same degree of success in treating tumors. These investigations are next.”

Related Links:

The Methodist Hospital Research Institute


Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.