We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Drug Treatments to Target Pneumocystis Dependence on Inositol Transport

By LabMedica International staff writers
Posted on 29 Dec 2016
Print article
Image: Pneumocystis jirovecii is present in this lung impression smear, using Giemsa stain. This fungus is arguably the most important cause of pneumonia in the immunocompromised human host (Photo courtesy of the CDC).
Image: Pneumocystis jirovecii is present in this lung impression smear, using Giemsa stain. This fungus is arguably the most important cause of pneumonia in the immunocompromised human host (Photo courtesy of the CDC).
A recent paper suggested that the Pneumocystis fungus, a dangerous pathogen that causes pneumonia in HIV patients and other immunocompromised individuals, could be targeted by drugs that would block its inositol transport mechanism.

Pneumocystis fungi are resistant to most currently prescribed anti-fungal therapies. Furthermore, the gold standard, trimethoprim sulfamethoxazole, often causes serious allergic reactions in many patients.

Inositol is a sugar alcohol. Its taste has been assayed at half the sweetness of table sugar (sucrose). The most common structural form of inositol, myo-inositol, plays an important role as the structural basis for a number of secondary messengers in eukaryotic cells, the various inositol phosphates. In addition, inositol serves as an important component of the structural lipids phosphatidylinositol (PI) and its various phosphates, the phosphatidylinositol phosphate (PIP) lipids.

Humans and microbes alike can obtain inositol by making it, which involves only two enzymes, by taking it from the environment by a transport process, or by recycling it from other cellular constituents. Inspection of the genomes of the pathogenic fungi of the genus Pneumocystis showed that these pneumonia-causing parasites could not make myo-inositol, as they lacked the two enzymes.

Investigators at the University of Cincinnati (OH, USA), who were studying Pneumocystis, found evidence of inositol transporters, which imported the sugar from the lungs where the fungi resided. In the present report, which was published in the December 13, 2016, online edition of the journal, MBio, they characterized the transport of myo-inositol in the fungus and found that the transporter was highly selective for myo-inositol and did not transport any other molecules.

The inositol transport system was distinct from that in mammalian cells, and since mammals can both make and transport myo-inositol, while Pneumocystis fungi must transport it, this process offered a potential new drug target.

"Identifying a drug to inhibit the transporter will kill these fungi because they cannot synthesize inositol as they lack two enzymes to do so," said first author Dr. Melanie T. Cushion, professor of internal medicine at the University of Cincinnati. "The transporters in humans and Pneumocystis are sufficiently different that inhibitors of the fungal transporter are not likely to impact the mammalian transporters. If that is the case, no toxicity is expected with this new line of drugs."

Related Links:
University of Cincinnati

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.