We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Reprogramming Therapy Reverses Signs of Aging in Mouse Progeria Model

By LabMedica International staff writers
Posted on 28 Dec 2016
Print article
Image: Induction of reprogramming improved muscle regeneration in aged mice. (Left) impaired muscle repair in aged mice; (right) improved muscle regeneration in aged mice subjected to reprogramming (Photo courtesy of the Salk Institute for Biological Studies).
Image: Induction of reprogramming improved muscle regeneration in aged mice. (Left) impaired muscle repair in aged mice; (right) improved muscle regeneration in aged mice subjected to reprogramming (Photo courtesy of the Salk Institute for Biological Studies).
Researchers on the biology of aging have shown that when the type of cellular reprogramming used to produce pluripotent stem cells is applied intermittently to whole animals the aging process can be arrested or reversed without stimulating cancer development.

In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in living animals.

To extend cellular reprogramming to whole animals while avoiding the completely uncontrolled type of growth that could lead to tumor development, investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) chose to work with a mouse progeria model. Animals with progeria show many signs of aging including DNA damage, organ dysfunction, and dramatically shortened lifespan.

To nullify the cancer threat, the investigators decided to induce partial reprogramming by short-term cyclic expression of the OSKM or Yamanaka reprogramming factors: Oct4 (octamer-binding transcription factor 4), Sox2 (SRY (sex determining region Y)-box 2), Klf4 (Kruppel-like factor 4), and c-Myc.

The investigators reported in the December 15, 2016, online edition of the journal Cell that partial reprogramming by short-term cyclic expression of the OSKM factors ameliorated cellular and physiological hallmarks of aging and prolonged lifespan by about 30% in the mouse progeria model. Similarly, expression of OSKM in vivo improved recovery from metabolic disease and muscle injury in older wild-type mice.

"Our study shows that aging may not have to proceed in one single direction," said senior author Dr. Juan Carlos Izpisua Belmonte, a professor in the gene expression laboratory at the Salk Institute for Biological Studies. "It has plasticity and, with careful modulation, aging might be reversed. Obviously, mice are not humans and we know it will be much more complex to rejuvenate a person. But this study shows that aging is a very dynamic and plastic process, and therefore will be more amenable to therapeutic interventions than what we previously thought."

The investigators warned that due to the complexity of aging in humans, potential anti-aging therapies based on these studies in mice may take up to 10 years to reach clinical trials.

Related Links:
Salk Institute for Biological Studies

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.