We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Proteasome Inhibitor Treatment Repairs Effects of Ribosomal Damage in Multiple Myeloma

By LabMedica International staff writers
Posted on 20 Dec 2016
Print article
Image: A micrograph of bone marrow aspirate showing the histologic correlate of multiple myeloma (Photo courtesy of Wikimedia Commons).
Image: A micrograph of bone marrow aspirate showing the histologic correlate of multiple myeloma (Photo courtesy of Wikimedia Commons).
A recent paper suggested that severity of a type of multiple myeloma characterized by a deletion from the genome that caused dysfunction of ribosome function could be reduced by treatment with a proteasome inhibitor.

Investigators at KU Leuven (Belgium) used high-resolution genomic profiling to examine the consequences of the deletion from chromosomal region 1p22 that is found in 20 to 40% of multiple myeloma (MM) patients. They postulated that the increased virulence of MM in these patients suggested the presence of an unidentified tumor suppressor on the deleted region.

The investigators reported in the December 2, 2016, online edition of the journal Leukemia that they had identified a 58 kilobase minimal deleted region (MDR) on 1p22.1 encompassing two genes: EVI5 (ectopic viral integration site 5) and RPL5 (ribosomal protein L5). Low mRNA expression of EVI5 and RPL5 was associated with worse survival in diagnostic cases.

RPL5 but not EVI5 mRNA levels were significantly lower in relapsed patients responding to the proteasome inhibitor bortezomib. Proteasomes are cellular complexes that break down proteins. In some cancers, the proteins that normally kill cancer cells are broken down too quickly. Bortezomib interrupts this process and lets those proteins kill the cancer cells

In both newly diagnosed and relapsed patients, bortezomib treatment could overcome their bad prognosis by raising their progression-free survival to equal that of patients with high RPL5 expression. Although the role of the EVI5 and RPL5 genes in promoting MM progression remains to be determined, the investigators identified RPL5 mRNA expression as a biomarker for initial response to bortezomib in relapsed patients and subsequent survival benefit after long-term treatment in newly diagnosed and relapsed patients.

"The ribosome is the protein factory of a cell. In MM patients, one part of the ribosome is produced less in 20 to 40% of the patients, depending on how aggressive the cancer is. We suspect that their cells are still producing protein, but that the balance is somewhat disrupted. In any case, we found that these people have a poorer prognosis than MM patients with an intact ribosome," said senior author Dr. Kim De Keersmaecker, head of the laboratory for disease mechanisms in cancer at KU Leuven. "One possible treatment for MM is the use of proteasome inhibitors. The proteasome is the protein demolition machine in a cell. There is a type of drugs, including bortezomib, which inhibits its functioning. How the defects in the ribosome influence the proteasome is not quite clear yet. But we discovered that patients with a defective ribosome respond better to bortezomib. In other words, their poorer prognosis can be offset by this treatment. On the basis of these findings, we can now develop tests to identify defects in the ribosome and thus determine which therapy will have most effect in a specific patient."

Related Links:
KU Leuven

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.