We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




MicroRNA Regulation Critical for Development of Pediatric Brain Tumors

By Gerald M. Slutzky, PhD
Posted on 14 Dec 2016
Print article
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Image: The nCounter system offers a simple, cost-effective way to simultaneously profile hundreds of mRNAs, microRNAs, or DNA targets (Photo courtesy of NanoString).
Cancer researchers have uncovered the critical role played by microRNA regulation in the development of childhood brain tumors.

MicroRNAs (miRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNAs) in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

Low-grade gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. Unlike many other types of cancerous tumors, these low-grade pediatric gliomas appear to have few genetic mutations, so the molecular basis for their development has been unclear.

Investigators at Johns Hopkins University (Baltimore, MD, USA) chose to examine a possible role for miRNAs in the development of pediatric gliomas, since miRNAs had been identified as molecular regulators of protein expression/translation that could repress multiple mRNAs concurrently through base pairing, and had an important role in other cancers.

The investigators used the NanoString (Seattle, WA, USA) digital counting system to analyze the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types.

They reported in the October 14, 2016, online edition of the journal Modern Pathology that a set of 61 microRNAs were differentially expressed in tumors compared with normal brain tissues, and several showed levels varying by tumor type. MicroRNAs miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with brain tissue and other tumors, while miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells.

The investigators employed lentiviral vectors to overexpress miR-487b in a pediatric glioma cell line. These modified cells were found to be less cancer-like, forming 30% fewer colonies and had decreased levels of some proteins, such as Nestin (neuroectodermal stem cell marker). Nestin is known to be important in both early development and in cancers.

Senior author Dr. Fausto J.Rodriguez, associate professor of pathology at Johns Hopkins University, said, "Physicians might be able to look at the levels of this and other microRNAs in blood or cerebrospinal fluid to test for the presence of cancer. Researchers might also be able to target microRNAs directly, altering their levels to make cancer cells less likely to form tumors. By gaining a better understanding of the fine genetic differences between cancers and healthy tissues, we can develop better therapeutic or prognostic strategies."

Related Links:
Johns Hopkins University
NanoString
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.