We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mutated Luciferase Generates Bright Light for Optogenetics Technique

By LabMedica International staff writers
Posted on 08 Nov 2016
Print article
Image: Individual neuron glowing with bioluminescent light produced by a new genetically engineered sensor (Photo courtesy of the Johnson Lab, Vanderbilt University).
Image: Individual neuron glowing with bioluminescent light produced by a new genetically engineered sensor (Photo courtesy of the Johnson Lab, Vanderbilt University).
A recent paper described a novel bioluminescent optogenetic technique that used a potent, mutated form of the enzyme luciferase to follow surges of calcium ions in cultured brain cells.

Optogenetics refers to a technique that uses light (usually fluorescence) to control cells in living tissue, typically neurons, which have been genetically modified to express light-sensitive ion channels. This method utilizes a combination of techniques from optics and genetics to control and monitor the activities of individual neurons in living tissue – even within freely-moving animals – and to precisely measure the effects of those manipulations in real-time. Most current optical methods for monitoring Ca++ levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence.

Investigators at Vanderbilt University (Nashville, TN, USA) capitalized on a newly developed luciferase (NanoLuc) that is 100-150 times brighter than previous luciferases and which greatly expands the usefulness of luminescence technology. Their Ca++ sensor was genetically encodable to allow targeting to specific cell types and/or cellular loci, and employed this bright new luciferase to obtain excellent signal strength.

The investigators reported in the October 27, 2016, online addition of the journal Nature Communications that this sensor had a large dynamic range and partnered optimally with optogenetic probes. Ca++ fluxes that were elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channel rhodopsin were quantified and imaged with the BRET (bioluminescence resonance energy transfer) Ca++ sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.

"Most of the efforts in optical recording use fluorescence, but this requires a strong external light source which can cause the tissue to heat up and can interfere with some biological processes, particularly those that are light sensitive," said senior author Dr. Carl Johnson, professor of biological sciences at Vanderbilt University. "There is an inherent conflict between fluorescent techniques and optogenetics. The light required to produce the fluorescence interferes with the light required to control the cells. Luminescence, on the other hand, works in the dark!"

"For a long time neuroscientists relied on electrical techniques for recording the activity of neurons. These are very good at monitoring individual neurons but are limited to small numbers of neurons. The new wave is to use optical techniques to record the activity of hundreds of neurons at the same time. We have shown that the approach works," said Dr. Johnson. "Now we have to determine how sensitive it is. We have some indications that it is sensitive enough to detect the firing of individual neurons, but we have to run more tests to determine if it actually has this capability."

Related Links:
Vanderbilt University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.