We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Class of Nanoparticle Drug Transporters Selectively Target Lung Cancer Cells

By LabMedica International staff writers
Posted on 26 Sep 2016
Print article
Image: Lung cancer cells (Photo courtesy of SPL).
Image: Lung cancer cells (Photo courtesy of SPL).
A novel class of nanoparticles is able to deliver siRNA-based drugs selectively to lung cancer cells without harming normal cells.

Conventional chemotherapeutic agents kill all rapidly dividing cells, which produces numerous harmful side effects. To develop a method for delivering chemotherapeutic drugs specifically to cancer cells, investigators at the University of Texas Southwestern Medical Center (Dallas, USA) worked with a unique pair of matched cancer/normal cell lines obtained from a single patient.

The investigators screened hundreds of nanoparticle (NP) polymers looking for those that would be taken up only by the cancer cell line while being excluded by the normal cells. They identified selective NPs that promoted rapid endocytosis into HCC4017 cancer cells, but were arrested at the membrane of HBEC30-KT normal cells. When injected into tumor xenografts in mice, these cancer-selective NPs were retained in tumors for over one week, whereas nonselective NPs were cleared within hours.

The nanoparticles were loaded with a siRNA drug. Small interfering RNAs (siRNAs) are a small noncoding family of 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets.

Results published the September 12, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences revealed that the NPs improved siRNA-mediated cancer cell apoptosis and caused significant suppression of tumor growth. Selective NPs were also able to mediate gene silencing in xenograft and orthotopic tumors via i.v. injection or aerosol inhalation, respectively.

These results highlighted the observation that different cells responded differently to the same drug carrier, an important factor that should be considered in the design and evaluation of all NP carriers. Since no targeting ligands were required, these functional polyester NPs provided an alternative approach for selective drug delivery to tumor cells that may improve efficacy and reduce adverse side effects of cancer therapies.

"The discovery that nanoparticles can be selective to certain cells based only on their physical and chemical properties has profound implications for nanoparticle-based therapies because cell type specificity of drug carriers could alter patient outcomes in the clinic," said senior author Dr. Daniel Siegwart, assistant professor of biochemistry at the University of Texas Southwestern Medical Center. "At the same time, a deeper understanding of nanoparticle interactions in the body opens the door to predict patient responses to existing liposome and nanoparticle therapies, and offers the potential to create future drug carriers customized according to individual genetic profiles."

Related Links:
University of Texas Southwestern Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.