We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Advanced Techniques Enable Mapping of Immune T-cell Surface Membranes

By LabMedica International staff writers
Posted on 28 Jun 2016
Print article
Image: Super-resolution imaging was used to capture the rearrangement of T-cell receptors from nanometer-scale protein islands (left) to micrometer-scale microclusters (right) after T-cell activation in mouse lymph nodes (Photo courtesy of the Salk Institute for Biological Studies).
Image: Super-resolution imaging was used to capture the rearrangement of T-cell receptors from nanometer-scale protein islands (left) to micrometer-scale microclusters (right) after T-cell activation in mouse lymph nodes (Photo courtesy of the Salk Institute for Biological Studies).
Advanced high-resolution (super-resolution) microscopy was used to map the surface membranes of immune T-cells before, during, and following activation by antigen-presenting cells.

T-cells become activated when T-cell receptors (TCRs) recognize agonist peptides bound to major histocompatibility complex molecules on antigen-presenting cells. T-cell activation critically relies on the spatiotemporal arrangements of TCRs on the plasma membrane. However, the molecular organizations of TCRs on lymph node-resident T-cells have not yet been determined, owing to microscope techniques being restricted to the diffraction limit of light.

In a new study, investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) used two advanced "super-resolution" microscope techniques to map the T-cell surface membrane.

The first method, structured illumination microscopy (SIM) is a wide field technique in which a grid pattern is generated through interference of diffraction orders and superimposed on the specimen while capturing images. The grid pattern is shifted or rotated in steps between the capture of each image set. Following processing with a specialized algorithm, high-frequency information can be extracted from the raw data to produce a reconstructed image having a lateral resolution approximately twice that of diffraction-limited instruments and an axial resolution ranging between 150 and 300 nanometers.

The second method, dSTORM (direct stochastic optical reconstruction microscopy), is more sensitive with resolution of approximately 50 nanometers. This method utilizes the photoswitching of a single fluorophore. In dSTORM, fluorophores are embedded in an oxidizing and reducing buffer system (ROXS) and fluorescence is excited. Sometimes, stochastically, the fluorophore will enter a triplet or some other dark state, which is sensitive to the oxidation state of the buffer. As the molecules return stochastically they can be excited to fluoresce so that single molecule positions can be recorded.

Results of the study were published in the June 14, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences. The investigators observed nanometer-scale plasma membrane domains, known as protein islands, on naïve T-cells. These protein islands were enriched within micrometer-sized surface areas that they called territories. In vivo T-cell activation caused the TCR territories to contract, leading to the coalescence of protein islands and formation of stable TCR microclusters.

"We had seen these receptors cluster and reposition in cultured cells that were artificially stimulated in the lab, but we have never seen their natural arrangements in lymph nodes until now," said senior author Dr. Björn Lillemeier, associate professor n the Nomis Center for Immunobiology and Microbial Pathogenesis at the Salk Institute for Biological Studies.

Related Links:
Salk Institute for Biological Studies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.