We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Researchers Generate Stem Cell-derived Beta-cells from Patients with Diabetes

By LabMedica International staff writers
Posted on 01 Jun 2016
Print article
Image: Researchers have produced insulin-secreting cells from stem cells derived from the skin of patients with type I diabetes. The cells (blue), made from stem cells, can secrete insulin (green) in response to glucose (Photo courtesy of Millman Laboratory, Washington University School of Medicine).
Image: Researchers have produced insulin-secreting cells from stem cells derived from the skin of patients with type I diabetes. The cells (blue), made from stem cells, can secrete insulin (green) in response to glucose (Photo courtesy of Millman Laboratory, Washington University School of Medicine).
Diabetes researchers have succeeded in generating functional insulin-secreting beta cells from stem cells derived from patients with the type I form of the disease.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) and Harvard University (Cambridge, MA, USA) had reported previously that they had established scalable in vitro production of functional stem cell-derived beta-cells (SC-beta cells). Now, in a report published in the May 10, 2016, online edition of the journal Nature Communications, they described extending this approach to generate the first SC-beta cells from type I diabetic patients (T1D). Beta-cells are destroyed during T1D disease progression, which has made it difficult to extensively study them in the past.

The T1D SC-beta cells created in these studies where shown to express beta-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice, and respond to anti-diabetic drugs. In addition, an in vitro disease model showed that the cells responded to different forms of beta-cell stress. Using these assays, the investigators found no major differences in T1D SC-beta cells compared with SC-beta cells derived from non-diabetic patients. Furthermore, there was no evidence of tumor development in mice that had received SC-beta cell transplants, even up to a year after the cells were implanted.

"There had been questions about whether we could make these cells from people with type I diabetes," said first author Dr. Jeffrey R. Millman, assistant professor of medicine and biomedical engineering at the Washington University School of Medicine. "Some scientists thought that because the tissue would be coming from diabetes patients, there might be defects to prevent us from helping the stem cells differentiate into beta cells. It turns out that is not the case. In theory, if we could replace the damaged cells in these individuals with new pancreatic beta cells - whose primary function is to store and release insulin to control blood glucose - patients with type I diabetes would not need insulin shots anymore. The cells we have manufactured sense the presence of glucose and secrete insulin in response. And beta cells do a much better job controlling blood sugar than diabetic patients can."

Related Links:
Washington University School of Medicine
Harvard University
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.