We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Age-Related Epigenetic Changes May Lead to Development of Diabetes in Later Life

By LabMedica International staff writers
Posted on 11 Apr 2016
Print article
Image: Pancreatic islets, shown as the lighter tissue among the darker, acinar pancreatic tissue in this hemalum-eosin stained slide (Photo courtesy of Wikimedia Commons).
Image: Pancreatic islets, shown as the lighter tissue among the darker, acinar pancreatic tissue in this hemalum-eosin stained slide (Photo courtesy of Wikimedia Commons).
Epigenetic changes that cause increased methylation and partial or complete inactivation of genes during aging may contribute to the development of type II diabetes in older individuals.

Investigators at Lund University (Malmö, Sweden) examined whether age-related epigenetic changes affected human islet function and if blood-based epigenetic biomarkers reflected those changes and were linked to the future appearance of type II diabetes. To accomplish this task, they analyzed DNA methylation in the genomes of pancreatic islet cells obtained from 87 non-diabetic donors, aged 26–74 years.

They reported in the March 31, 2016, online edition of the journal Nature Communications that aging was associated with increased DNA methylation of 241 sites. These sites covered genetic loci previously associated with type II diabetes, for example, KLF14 (Krüppel-like factor 14). Blood-based epigenetic biomarkers reflected age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2 (Four and a half LIM domains 2), ZNF518B (Zinc finger protein 518B), and FAM123C (APC membrane recruitment protein 3). Some of these proteins were linked to insulin secretion and type II diabetes. Silencing these genes in beta-cells altered – often increasing – insulin secretion.

"Increased insulin secretion actually protects against type II diabetes. It could be the body's way of protecting itself when other tissue becomes resistant to insulin, which often happens as we get older", said senior author Dr. Charlotte Ling, professor of clinical science at Lund University. "You cannot change your genes and the risks that they entail, but epigenetics means that you can affect the DNA methylations, and thereby gene activity, through lifestyle choices."

Related Links:

Lund University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.