We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Some CRISPR Gene Editing Complexes Target RNA

By LabMedica International staff writers
Posted on 15 Mar 2016
Print article
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
Image: Representation of the crystal structure of a CRISPR-associated protein (Photo courtesy of Wikimedia Commons).
A team of molecular microbiologists have demonstrated that in some bacteria the CRISPR/Cas genome editing complex can edit RNA as well as DNA.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with Cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

CRISPR systems are phylogenetically grouped into five types (types I to V). In addition to the CRISPR/Cas9 complex, CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new viral threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT) enzyme.

Such an arrangement suggested the possibility of a spacer integration mechanism involving Cas1 integrase activity and the reverse transcription of RNA to DNA. This would enable the acquisition of new spacers from RNA, potentially generating adaptive immunity against RNA-based viruses. To test this hypothesis, investigators at the Carnegie Institution for Science Department of Plant Biology (Stanford, CA, USA) characterized the spacer acquisition machinery of the RT-Cas1–containing type III-B CRISPR system in the bacterium Marinomonas mediterranea (MMB-1), by means of in vivo assays and in vitro reconstitution.

Results published in the February 26, 2016, issue of the journal Science revealed that a natural RT-Cas1 fusion protein in a type III CRISPR system could enable the acquisition of new spacers directly from RNA. With other type III CRISPR systems known to target RNA for degradation, RT-associated CRISPR-Cas systems would effectively generate adaptive immunity against RNA parasites.

Contributing author Dr. Devaki Bhaya professor of biology at the Carnegie Institution of Science Department of Plant Biology, said, "The team has demonstrated that this biochemical process can occur in the lab, and based on this information, the CRISPR/Cas system may confer immunity against RNA-based invaders out there in the wild. It is gratifying to see how much we can learn from the extraordinary protein diversity that exists in the microbial and viral world, especially when it is combined with rigorous biochemistry."

Related Links:

Carnegie Institution for Science Department of Plant Biology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.