We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cryoelectron Microscopy Reveals the Ultrastructure of Retroviral Integrase-DNA Complexes

By LabMedica International staff writers
Posted on 29 Feb 2016
Print article
Image: Structure of the intasome protein complex that enables retroviruses to establish permanent infections in their hosts. The intasome hijacks host genomic material, DNA (white) and histones (beige), and irreversibly inserts viral DNA (blue) (Photo courtesy of the Salk Institute for Biological Studies).
Image: Structure of the intasome protein complex that enables retroviruses to establish permanent infections in their hosts. The intasome hijacks host genomic material, DNA (white) and histones (beige), and irreversibly inserts viral DNA (blue) (Photo courtesy of the Salk Institute for Biological Studies).
Advanced imaging technology has revealed the ultrastructure of the retrovirus intasome, the protein complex that controls the insertion of viral DNA into the host target cell.

The integrase enzyme catalyses the integration of viral DNA into host target DNA, which is an essential step in the life cycle of all retroviruses. Previous structural characterization of integrase-viral DNA complexes, or intasomes, from the nonpathogenic prototype foamy virus (PFV) revealed a functional integrase tetramer, and it is generally believed that intasomes derived from other retroviral genera use tetrameric integrase. However, the intasomes of orthoretroviruses, which include all known pathogenic species, have not been characterized structurally.

Investigators at the Salk Institute for Biological Studies (La Jolla, CA, USA) and Harvard Medical School (Boston, MA, USA) employed the advanced imaging technique cryoelectron microscopy (cryo-EM) to perform structural analysis studies on the pathogenic betaretrovirus, mouse mammary tumor virus (MMTV).

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

Results published in the February 17, 2016, online edition of the journal Nature revealed unexpected octameric integrase architecture for the MMTV. The structure was composed of two core integrase dimers, which interacted with the viral DNA ends and structurally mimicked the PFV integrase tetramer, and two flanking integrase dimers that engaged the core structure via their integrase carboxy-terminal domains. Contrary to the belief that tetrameric integrase components were sufficient to catalyze DNA insertion, the flanking integrase dimers were necessary for MMTV integrase activity.

"The details of how retroviruses integrate differ far more than previously thought and lead to entirely distinct patterns of infection," said contributing author Dr. Dmitry Lyumkis, a research fellow at the Salk Institute for Biological Studies.

"The MMTV intasome structure defines an unexpected novel paradigm for the structural basis of retroviral DNA integration," said senior author Dr. Alan Engelman, professor of medicine at Harvard Medical School.

Related Links:

Salk Institute for Biological Studies
Harvard Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.