We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Polyclonal Breast Cancer Metastases Are Generated by Clusters of Migrating Cells

By LabMedica International staff writers
Posted on 14 Feb 2016
Print article
Image: A metastasis now growing in lung tissue (blue) that originated from at least two cells (red and green) from a multicolored tumor in the mammary gland of a mouse (Photo courtesy of Breanna Moore, Cheung laboratory, Fred Hutchinson Cancer Research Center).
Image: A metastasis now growing in lung tissue (blue) that originated from at least two cells (red and green) from a multicolored tumor in the mammary gland of a mouse (Photo courtesy of Breanna Moore, Cheung laboratory, Fred Hutchinson Cancer Research Center).
A recent study confirmed that, contrary to conventional wisdom, cancer metastasis usually depends on the release of clusters of cells rather than single cells from the primary tumor.

Conventional models of cancer progression propose that single cells leave the primary tumor, enter the circulation, and seed metastases based on the clonal type of that cell. However, metastases can contain multiple clones, raising the question of how polyclonal metastases are formed.

To answer this question investigators at Johns Hopkins University (Baltimore, MD, USA) used multicolor lineage tracing to follow red or green tagged cells as they escaped from a primary tumor (in culture or in a mouse model) to form daughter tumors.

They reported in the February 1, 2016, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that polyclonal seeding by cell clusters was the most frequent mechanism in a common mouse model of breast cancer, accounting for more than 90% of metastases. They directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases.

Experimentally aggregating tumor cells into clusters induced a greater than 15-fold increase in colony formation in three-dimensional in vitro gel culture and a greater than 100-fold increase in metastasis formation in a mouse model.

The investigators found that the most invasive clones frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14), which regulated cell-cell adhesion, cell-matrix adhesion, and immune evasion. When K14 expression was blocked, there was a dramatic reduction in formation of distant metastases combined with disrupted expression of multiple metastasis effectors.

“We found that cancer cells do two things to increase their chances of forming a new metastasis,” said senior author Dr. Andrew Ewald, associate professor of cell biology at Johns Hopkins University. “They turn on a molecular program that helps them travel through a diverse set of environments within the body, and they travel in groups.”

“Because most chemotherapeutic drugs target proliferating cells, metastasizing cells would not be killed by them, leaving patients vulnerable to new tumors,” said Dr. Ewald. “Our discoveries add to knowledge that could help overcome that vulnerability. We found that the activity of dozens of genes differs between proliferating and metastasizing cells. Since many of those genes encode cell surface proteins, we hope these findings might eventually be used to develop new drugs that target metastasizing cells.”

Related Links:
Johns Hopkins University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.