We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




ApoE4 Linked to Various Diseases by Transcription Factor Activity

By LabMedica International staff writers
Posted on 31 Jan 2016
Print article
Image: Molecular model of apolipoprotein E (Photo courtesy of Wikimedia Commons).
Image: Molecular model of apolipoprotein E (Photo courtesy of Wikimedia Commons).
The lipid-binding protein apolipoprotein E4 (ApoE4) has been found to act as a transcription factor with binding sites on more than 1,700 genes, many of which are linked to diverse disease syndromes such as Alzheimer's disease (AD), atherosclerotic cardiovascular disease, Lewy body dementia, and inflammation.

A major unanswered question in biology and medicine has been the mechanism by which the lipid-binding protein ApoE4—the product of the apolipoprotein E epsilon4 allele—operates in the various disease states to which it has been linked.

To clarify this issue, investigators at the Buck Institute for Research on Aging (Los Angeles, CA, USA) used chromatin immunoprecipitation and high-throughput DNA sequencing to evaluate gene apolipoprotein E activity in a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted mouse brains.

The investigators reported in the January 20, 2016, online edition of the Journal of Neuroscience that ApoE4 underwent nuclear translocation, bound double-stranded DNA with high affinity, and functioned as a transcription factor. They found that ApoE4's binding sites included 1,700 promoter regions that comprised genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance—all processes that have been implicated in the development of Alzheimer's disease.

Of particular interest was the inhibitory effect of ApoE4 on the enzyme sirtuin 1 (SIRT1, silent mating type information regulation 2 homolog 1). This enzyme is a histone deacetylase involved in numerous critical cell processes including DNA repair and apoptosis, which had been linked to healthy metabolism throughout the body, including organs like the pancreas and liver.

"Our group hopes this work will lead to a new type of screen for Alzheimer's prevention and treatment," said senior author Dr. Rammohan Rao, an associate research professor at the Buck Institute for Research on Aging. "We are also designing and engineering novel drug candidates that target not one, but several of the ApoE4 mediated pathways simultaneously. Ultimately we want to develop a drug that can be given to ApoE4 carriers that would prevent the development of Alzheimer's disease, and these results provide a mechanism and screen to do that."

Related Links:

Buck Institute for Research on Aging


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.