We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Reprogrammed Skin Cells Produce Insulin and Prevent Diabetes in Mouse Model

By LabMedica International staff writers
Posted on 17 Jan 2016
Print article
Image: Micrograph of functioning human pancreatic cells following transplantation into a mouse (Photo courtesy of Dr. Saiyong Zhu, University of California, San Francisco).
Image: Micrograph of functioning human pancreatic cells following transplantation into a mouse (Photo courtesy of Dr. Saiyong Zhu, University of California, San Francisco).
Advances in chemical and genetic methods for cellular reprogramming have enabled researchers to convert human skin cells (fibroblasts) into fully functional pancreatic beta cells.

Investigators at the University of California, San Francisco (USA) began by nudging human fibroblasts towards an endodermal cell fate by employing non-integrative episomal reprogramming factors in combination with specific growth factors and chemical compounds. On initial culture, converted definitive endodermal progenitor cells (cDE cells) were channeled into becoming posterior foregut-like progenitor cells (cPF cells). The cPF cells and their derivatives, pancreatic endodermal progenitor cells (cPE cells), were then greatly expanded (by more than a trillion-fold) in mass culture.

A screening approach enabled the investigators to identify chemical compounds that promoted the differentiation and maturation of cPE cells into functional pancreatic beta-like cells (cPB cells) in vitro.

Populations of cPB cells were transplanted into mice, and the investigators reported in the January 6, 2016, online edition of the journal Nature Communications that these cells exhibited glucose-stimulated insulin secretion in vivo and protected the mice from chemically induced diabetes.

The results obtained during this study have important implications for future strategies aimed at generating high numbers of functional beta cells, which may help restoring glucose balance in patients suffering from diabetes.

Senior author Dr. Sheng Ding, professor of pharmaceutical chemistry at the University of California, San Francisco, said, "This new cellular reprogramming and expansion paradigm is more sustainable and scalable than previous methods. Using this approach, cell production can be massively increased while maintaining quality control at multiple steps. This development ensures much greater regulation in the manufacturing process of new cells. Now we can generate virtually unlimited numbers of patient-matched insulin-producing pancreatic cells."

Related Links:

University of California, San Francisco


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.