We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Researchers Present Definitive Molecular Structure of mTORC1

By LabMedica International staff writers
Posted on 27 Dec 2015
Print article
Image: The image depicts a three-dimensional model of the protein complex mTORC1 (Photo courtesy of the University of Basel).
Image: The image depicts a three-dimensional model of the protein complex mTORC1 (Photo courtesy of the University of Basel).
By combining cryoelectron microscopy with X-ray crystallographic data, researchers have been able to define the structural architecture of the protein complex mTORC1 (mammalian target of rapamycin complex 1).

Mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis that under ordinary conditions induces cells to grow and divide. In situations of severe nutrient deprivation mTOR prevents protein synthesis so that the cell can conserve energy. However, in cancer cells the mTOR pathway does not function correctly and signals tumor cells to grow, divide, undergo metastasis, and invade new, healthy tissues. Functionally, mTOR is the catalytic subunit of two structurally distinct complexes: mTORC1 and mTORC2. Both complexes localize to different subcellular compartments, thus affecting their activation and function.

MTOR complex 1 (mTORC1) is composed of the proteins mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8 (MLST8), and the non-core components PRAS40 and DEPTOR. This complex functions as a nutrient/energy/redox sensor and controls protein synthesis. The activity of mTORC1 is stimulated by insulin, growth factors, serum, phosphatidic acid, amino acids (particularly leucine), and oxidative stress.

The extremely large size of the mTORC1 complex has so far prevented researchers from being able to resolve its structure. However, in a study published in the December 17, 2015, online edition of the journal Science, investigators from the University of Basel (Switzerland) described combining cryo-electron microscopy at 5.9 angstrom [1 angstrom = 0.1 nm] resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution.

The structural details established during this study served to explain how FKBP (FK506 binding protein)-rapamycin and architectural elements of mTORC1 limited access to a recessed active site in the complex. Consistent with a role in substrate recognition and delivery, the conserved N-terminal domain of Raptor was juxtaposed with the kinase active site.

"The partner proteins of mTOR have already been identified in earlier biochemical studies", said senior author Dr. Timm Maier, professor of structural biology at the University of Basel. "However, it has remained unclear how the proteins interact precisely. But it does not make sense to examine the individual components alone, as the interactions of all the proteins in the complex are critical for its function. The whole is much more than the sum of its parts. Although there is much known about mTORC1, our study revealed surprising new insight. The architecture of this huge protein complex is quite exceptional. We could determine the precise interaction sites of the partner proteins and how they are arranged, and thus elucidate the function of the individual partners."

Related Links:

University of Basel


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.