We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Algorithms Allow Automated Monitoring of Individual Cell-to-Cell Interactions

By LabMedica International staff writers
Posted on 25 Aug 2015
Print article
Image: Researchers used Time-lapse Imaging Microscopy In Nanowell Grids (TIMING) to demonstrate that CD4+ CD19-chimeric antigen receptor (CAR+) T-cells participate in multi-killing of tumor cells with slower kinetics of killing than CD8+CAR+T cells but high motility subgroups of both T-cell subsets have similar kinetics (Photo courtesy of the University of Houston).
Image: Researchers used Time-lapse Imaging Microscopy In Nanowell Grids (TIMING) to demonstrate that CD4+ CD19-chimeric antigen receptor (CAR+) T-cells participate in multi-killing of tumor cells with slower kinetics of killing than CD8+CAR+T cells but high motility subgroups of both T-cell subsets have similar kinetics (Photo courtesy of the University of Houston).
A novel combination of microscopy, time-lapse video recording, and analytical algorithms enables tracking of individual cell-to-cell interactions, which will boost research towards cancer immunotherapy treatments.

The technique, Time-lapse Imaging Microscopy in Nanowell Grids (TIMING) was developed by investigators at the University of Houston (TX, USA) and their colleagues at the University of Texas M.D. Anderson Cancer Center. Studies using this method were carried out using fluorescently labeled human T-cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4), which were co-incubated on polydimethylsiloxane nanowell arrays and imaged using multichannel time-lapse microscopy.

Novel cell segmentation and tracking algorithms accounted for cell variability and exploited the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading.

Automated analysis of recordings from 12 different experiments published in the June 9, 2015, online edition of the journal Bioinformatics demonstrated automated nanowell delineation accuracy greater than 99%, automated cell segmentation accuracy greater than 95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering.

Example analysis revealed that NK cells efficiently discriminated between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells displayed higher motility than non-killers, both before and during contact.

"We have developed a game-changing piece of software that can accurately analyze an entire grid of nanowell videos and make quantitative measurements," said senior author Dr. Badri Roysam, professor of electrical and computer engineering at the University of Houston. "It is essentially the combination of a supermicroscope and a supercomputer to screen cell-cell interactions on a large scale. The proposed algorithms dramatically improved the yield and accuracy of the automated analysis to a level at which the automatically generated cellular measurements can be utilized for biological studies directly, with little/no editing."

Related Links:

University of Houston
University of Texas M.D. Anderson Cancer Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.