We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Ancient Viruses Built from Computer Models May Improve Gene Therapy Delivery

By LabMedica International staff writers
Posted on 11 Aug 2015
Print article
Image: Artist\'s conception of an adeno-associated viral capsid in formation by ancestral sequence reconstruction (Photo courtesy of Dr. Eric Zinn, Harvard University Medical School).
Image: Artist\'s conception of an adeno-associated viral capsid in formation by ancestral sequence reconstruction (Photo courtesy of Dr. Eric Zinn, Harvard University Medical School).
An advanced computer modeling strategy was used to design ancient forms of adeno-associated viruses (AAVs), which were then synthesized in the laboratory for use as potential delivery vectors for gene therapy.

AAV vectors have emerged as a gene-delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation of vectors—including rejection by the patient's immune system—often prevent broader application of AAV gene therapy. Efforts to engineer AAV vectors have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle.

To bypass these limitations investigators at Harvard University Medical School (Boston, MA, USA) built computer models of the AAC viral capsid using ancestral sequence reconstruction from inferred evolutionary intermediates. Computer model-derived sequences were synthesized in the laboratory and characterized for biological properties relevant to clinical applications.

Results published in the July 30, 2015, online edition of the journal Cell Reports described the generation of nine functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8, and 9, as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.

"The vectors developed and characterized in this study demonstrate unique and potent biology that justify their consideration for gene therapy applications," said senior author Dr. Luk H. Vandenberghe, professor of ophthalmology at Harvard University Medical School. "We believe our findings will teach us how complex biological structures, such as AAVs (adeno-associated viruses), are built. From this knowledge, we hope to design next-generation viruses for use as vectors in gene therapy."

Related Links:

Harvard University Medical School


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.