We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Small Interfering RNA Nanoparticles Accelerate Wound Healing in Mouse Model

By LabMedica International staff writers
Posted on 07 Apr 2015
Print article
Image: Imaging of burn wounds in mice by confocal microscopy indicates that those treated with FL2 siRNA nanoparticles (far right) experienced collagen deposition and hair follicle formation (Photo courtesy of the Albert Einstein College of Medicine).
Image: Imaging of burn wounds in mice by confocal microscopy indicates that those treated with FL2 siRNA nanoparticles (far right) experienced collagen deposition and hair follicle formation (Photo courtesy of the Albert Einstein College of Medicine).
The time required for wound healing in a mouse model was significantly shortened by treatment with nanoparticles that had been loaded with small interfering RNA (siRNA) that blocked the synthesis of the enzyme fidgetin-like 2 (FL2).

FL2, a fundamental regulator of cell migration, is a microtubule-severing enzyme that belongs to the fidgetin family, which plays varying roles in cellular development and function. When active, FL2 slows the migration of cells involved in the healing process into the wound.

Investigators at Albert Einstein College of Medicine (New York, NY, USA) found that depletion of FL2 from mammalian tissue culture cells resulted in a more than two-fold increase in the rate of cell movement, due in part to a significant increase in directional motility. Immunofluorescence analyses indicated that FL2 normally localized to the cell edge, importantly to the leading edge of polarized cells, where it regulated the organization and dynamics of the microtubule cytoskeleton.

To apply these findings to live animals, the investigators facilitated the uptake of FL2-specific siRNA by utilizing a nanoparticle-based delivery platform. The siRNA caused the local depletion of FL2 in mice with both cut and burn wounds by binding to the FL2 gene's messenger RNA (mRNA), which prevented the mRNA from being translated into FL2 proteins.

The investigators reported in the March 10, 2015, online edition of the Journal of Investigative Dermatology that topical application of FL2 siRNA nanoparticles to either wound type resulted in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identified FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.

"SiRNAs on their own will not be effectively taken up by cells, particularly inside a living organism" said senior author Dr. David J. Sharp, professor of physiology and biophysics at Albert Einstein College of Medicine. "They will be quickly degraded unless they are put into some kind of delivery vehicle. We saw normal, well-orchestrated regeneration of tissue, including hair follicles and the skin's supportive collagen network. Not only did the cells move into the wounds faster, but they knew what to do when they got there."

"We envision that our nanoparticle therapy could be used to speed the healing of all sorts of wounds, including everyday cuts and burns, surgical incisions, and chronic skin ulcers, which are a particular problem in the elderly and people with diabetes," said Dr. Sharp.

Related Links:

Albert Einstein College of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.