We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

By LabMedica International staff writers
Posted on 24 Feb 2015
Print article
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).
Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.

Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because tumors generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, it was hypothesized that saposin C may be an effective anticancer agent.

SapC–DOPS nanovesicles had been shown previously to target phosphatidylserine, an anionic phospholipid preferentially exposed in the surface of cancer cells and tumor-associated vasculature. Since binding of SapC to phosphatidylserine is favored at acidic pHs, and the latter characterizes the milieu of many solid tumors, investigators at the University of Cincinnati (OH, USA) and their colleagues at Nanjing Medical University (China) tested the effect of pH on the binding capacity of SapC–DOPS to lung tumor cells and the influence of the nanovesicles on the viability of the cells.

Results published in the February 2015 online edition of the journal Molecular Cancer Therapeutics revealed that, as expected, SapC–DOPS binding to cancer cells was more pronounced under acidic conditions. Viability assays on a panel of human lung tumor cell cultures showed that SapC–DOPS cytotoxicity was positively correlated with cell surface phosphatidylserine levels, whereas mitochondrial membrane potential measurements were consistent with apoptosis-related cell death.

Using a fluorescence tracking method in live mice, the investigators showed that SapC–DOPS specifically targeted human lung cancer xenografts, and that systemic therapy with SapC–DOPS induced tumor apoptosis and significantly inhibited tumor growth without negatively affecting normal tissues.

Senior author Dr. Xiaoyang Qi, professor of hematology-oncology at the University of Cincinnati, said, "Using a double-tracking method in live models, we showed that the nanovesicles were specifically targeted to the tumors. These data suggest that the acidic phospholipid phosphatidylserine is a biomarker for lung cancer, as it has been found to be for pancreatic and brain tumors in previous studies, and can be effectively targeted for therapy using cancer-selective SapC-DOPS nanovesicles. We observed that the nanovesicles selectively killed human lung cancer cells, and the noncancerous, or untransformed cells, remained unaffected. This toxic effect correlated to the surface exposure level of phosphatidylserine on the tumor cells. Our results show that SapC-DOPS could be a promising treatment option for lung cancer worthy of further clinical study."

Related Links:

University of Cincinnati
Nanjing Medical University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.