We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

By LabMedica International staff writers
Posted on 21 Dec 2014
Print article
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).
Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.

Investigators at Indiana University (Bloomington, USA) had reported previously that a "unimolecular dual incretin" derived from an intermixed peptide sequence from the hormones GLP-1 and GIP corrected two causal mechanisms of diabetes-linked obesity, adiposity-induced insulin resistance, and pancreatic insulin deficiency more effectively than did selective mono-agonists. This superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans).

Incretins are a group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. Incretins also inhibit glucagon release from the alpha cells of the Islets of Langerhans. The two main candidate molecules that fulfill criteria for an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (also known as: glucose-dependent insulinotropic polypeptide or GIP). Both GLP-1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4).

In a paper published in the December 8, 2014, online edition of the journal Nature Medicine, the investigators and their colleagues at the German Research Center for Environmental Health (Neuherberg, Germany) discussed results obtained with a new tripeptide drug that comprised the previous GLP-1/GIP combination with the addition of the hormone glucagon. Glucagon enhanced the effects of the other two hormones by increasing energy expenditure.

Results obtained by treating a rodent model of metabolic syndrome with the tripeptide drug showed that the new compound specifically and equally targeted three receptors of GLP-1, GIP, and glucagon, and reduced the animals' body weight by about 30%, almost twice as much as the GLP-1/GIP double hormone.

"This peptide represents the first rationally designed, fully potent, and balanced triple agonist ever achieved in the treatment of any disease," said contributing author Dr. Richard DiMarchi, professor of chemistry at Indiana University. "The benefits of the previously reported individual co-agonists have been integrated to a single molecule of triple action that provides unprecedented efficacy to lower body weight and control metabolism."

Human clinical trials of the tripeptide drug are being managed by Roche (Basel, Switzerland).

Related Links:

Indiana University
German Research Center for Environmental Health
Roche


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.