We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Protein Maps to Help Develop Powerful New Cancer Drugs

By LabMedica International staff writers
Posted on 06 Oct 2014
Print article
Chemical scientists have gained new insights into how a disease-causing enzyme makes changes to proteins and how to block it. The scientists hope their findings will help them to design drugs that could target the enzyme, known as N-myristoyltransferase, and potentially lead to new treatments for cancer and inflammatory conditions.

The scientists have already identified a molecule that blocks NMT’s activity, and have identified specific protein substrates where this molecule has a potent impact. NMT makes irreversible changes to proteins and is known to be involved in a range of diseases including cancer, epilepsy and Alzheimer’s disease.

In a study published September 28, 2014, in the journal Nature Communications, biochemists used living human cancer cells to identify more than 100 proteins that NMT modifies, with almost all these proteins being identified for the very first time in their natural setting. The scientists mapped all of the proteins and in addition ascertained that a small drug-like molecule can block the activity of NMT and suppress its ability to modify each of these proteins, suggesting a potential new way to treat cancer.

Lead researcher Prof. Ed Tate, from the department of chemistry at Imperial College London (UK), said, “We now have a much fuller picture of how NMT operates, and more importantly how it can be inhibited, than ever before. This is the first time that we have been able to look in molecular detail at how this potential drug target works within an entire living cancer cell, so this is a really exciting step forward for us. This ‘global map’ allows us to understand what the effects of inhibiting NMT will be. This means we can determine which diseases it might be possible to combat by targeting NMT, enabling us a next step to explore how effective such treatments could be.”

The researchers spent several years developing a dedicated set of tools to identify and examine NMT and the proteins it changes. They began by conducting a detailed large scale study searching for proteins under the control of NMT, but the scientists still needed data on the function of these proteins and how they are modified.

Next they used mass spectrometry to quantify the effect of a NMT inhibitor molecule. To examine this interaction, they induced apoptosis. This process is crucial in cancer chemotherapy, and is very frequently deactivated in drug-resistant tumors. Up to now, scientists knew that NMT modified only a handful of protein during apoptosis, but the findings of this study identified many new proteins affected by NMT, suggesting new ways to combat drug resistance.

Pondering on the next phase of research, Prof. Tate said, “On the back of these results we are looking to test a drug that will have the most potent impact on blocking NMT’s ability to modify proteins, and we have started working with collaborators at the Institute of Cancer Research and elsewhere on some very promising therapeutic areas. We are still at an early stage in our research but we have already identified several very potent drug-like NMT inhibitors that are active in animal disease models, and we hope to move towards clinical trials over the next five to 10 years.”

Related Links:

Imperial College London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Analyzer 2.0 with remote test results access enhances collaboration across the healthcare system (Photo courtesy of QIAGEN)

Upgraded Syndromic Testing Analyzer Enables Remote Test Results Access

QIAGEN (Venlo, the Netherlands) has released the QIAstat-Dx Analyzer 2.0, including the Software 1.6 upgrade. This represents a significant advancement from the initial QIAstat-Dx Analyzer 1.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The RedDrop One blood collection device has received 510(k) clearance from the U.S. FDA for prescription use (Photo courtesy of RedDrop Dx)

Innovative Blood Collection Device Overcomes Common Obstacles Related to Phlebotomy

The discomfort associated with traditional blood draws leads to a significant issue: approximately 30% of diagnostic tests prescribed by physicians are never completed by patients. This avoidance is often... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.