We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

By LabMedica International staff writers
Posted on 14 Sep 2014
Print article
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms of pulmonary arterial hypertension in a population of laboratory animals.

A pathogenic role for oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids has been well established in vascular diseases including pulmonary arterial hypertension. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the roles of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension have not been well established.

Investigators at the University of California, Los Angeles (USA) studied two different rodent models of pulmonary hypertension: a monocrotaline rat model and a hypoxia mouse model. In addition, they examined lung tissues and serum from human patients with pulmonary arterial hypertension.

Results published in the August 26, 2014, issue of the journal Circulation revealed that plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in the rodents with pulmonary hypertension. 4F treatment reduced these levels and alleviated preexisting pulmonary hypertension in both rodent models.

MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly down regulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with pulmonary hypertension. In vivo miR193 overexpression in the lungs abolished preexisting pulmonary hypertension and resulted in down regulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored pulmonary hypertension-induced miR193 expression via transcription factor retinoid X receptor alpha.

These results established the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the reversal of pulmonary hypertension and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.

“Our research helps unravel the mechanisms involved in the development of pulmonary hypertension,” said senior author Dr. Mansoureh Eghbali, associate professor of anesthesiology at the University of California, Los Angeles. “A key peptide related to HDL cholesterol that can help reduce these oxidized lipids may provide a new target for treatment development.”

Related Links:

University of California, Los Angeles


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.