Features Partner Sites Information LinkXpress
Sign In
Demo Company

Naturally Derived Plant Compounds Protect Skin during Cancer Radiotherapy

By BiotechDaily International staff writers
Posted on 06 Aug 2014
Print article
Plant-derived natural compounds may provide protection to the skin from the damaging effects of gamma radiation during cancer radiotherapy, according to new research.

Radiotherapy for cancer involves exposing the patient or their tumor more directly to ionizing radiation, such as X-rays or gamma rays. The radiation irreparably injures the cancer cells. Regrettably, such radiation is also harmful to healthy tissue, in particular, the skin over the site of the tumor, which is then at risk of hair loss, skin problems, and even skin cancer. Because of these disadvantages, finding ways to protect the overlying skin are being actively sought.

Writing in the August/September 2014 issue of the International Journal of Low Radiation, Dr. Faruck Lukmanul Hakkim, from the University of Nizwa (Oman) and Nagasaki University (Japan), and colleagues from Macquarie University (Sydney, NSW, Australia), Bharathiar University (Coimbatore, Tamil Nadu, India) and Konkuk University (Seoul, Republic of Korea), explained how three abundant and well-evaluated natural products derived from plants can protect the skin against gamma radiation during radiotherapy.

Dr. Hakkim and colleagues discussed in their article the benefits of the organic, antioxidant compounds caffeic acid (CA), rosmarinic acid (RA), and trans-cinnamic acid (TCA) used at nontoxic concentrations. They assessed the radio-protective effect of these compounds against gamma-radiation in terms of reducing levels of reactive oxygen species (ROS) generated in skin cells by clinical relevance dose of gamma ray in the laboratory and in terms of the damage to the genetic material DNA, specifically double strand breaks in laboratory samples of human skin cells (keratinocytes).

The investigators discovered that treating the human skin cells with CA, RA, and TCA can protect the cells by 40, 20, and 15%, respectively, from gamma ray toxicity. The scientists suggested that the protective effect occurs because the compounds soak up the ROS and chemically deactivate them as well as enhancing the body’s natural DNA repair processes.

The investigators suggested that these compounds would be well-suited to be used as skin protectants during combination chemo- and radiotherapy. Further research is ongoing to study the clinical potential of mixtures of the three natural products.

Related Links:

University of Nizwa
Nagasaki University
Macquarie University

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.