Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Anti-Inflammatory Drugs May Treat Some Aggressive Tumors

By BiotechDaily International staff writers
Posted on 10 Jul 2014
Image: A mouse mammary gland missing the tumor-suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis (Photo courtesy of Raleigh Kladney).
Image: A mouse mammary gland missing the tumor-suppressor p53 shows expression of ARF (green), now known for a backup role in protecting cells from becoming cancerous. If both p53 and ARF are mutated, the tumors that form are aggressive and may benefit from treatment with anti-inflammatory drugs called JAK inhibitors, currently prescribed for rheumatoid arthritis (Photo courtesy of Raleigh Kladney).
New research raises the possibility that some cancer patients with aggressive tumors may benefit from a class of anti-inflammatory drugs used to treat rheumatoid arthritis.

By studying triple-negative breast cancer, researchers from Washington University School of Medicine in St. Louis (MO, USA) found that some aggressive tumors rely on an antiviral pathway that seems to fuel the inflammation process, widely recognized for roles in rheumatoid arthritis, cancer, and other inflammatory diseases.

The investigators reported their findings in the June 26, 2014, issue of the journal Cell Reports. Until now, even though ARF was known to be expressed in some tumors with mutated p53, ARF largely was thought to be nonfunctional in this scenario. But the investigators showed that in the absence of p53, ARF actually protects against even more aggressive tumor formation.

“It’s probably inaccurate to say that ARF completely replaces p53, which is a robust tumor suppressor with multiple ways of working,” said senior author Jason D. Weber, PhD, an associate professor of medicine. “But it appears the cell has set up a sort of backup system with ARF. It’s not surprising that these are the two most highly mutated tumor suppressors in cancer. Because they’re backing one another up, the most aggressive tumors form when you lose both.”

Related Links:

Washington University School of Medicine in St. Louis



Channels

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.