Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Diabetes Linked to Faulty Mitochondria Disposal Pathway

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
A molecular pathway that regulates the disposal of defective mitochondria (mitophagy) has been cited as a potential target for prevention and control of diabetes and certain other diseases.

Clec16a (C-type lectin domain family 16, member A) has been identified as a disease susceptibility gene for type I diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. In the current study investigators at the University of Pennsylvania (Philadelphia, USA) worked with a genetically engineered mouse model that lacked Clec16a in their pancreas.

The investigators reported in the June 19, 2014, online edition of the journal Cell that normally Clec16a interacted with the E3 ubiquitin ligase Nrdp1. Loss of Clec16a led to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a had abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal pancreatic beta-cell function.

Additionally, the investigators reported that patients harboring a pro-diabetic SNP (single nucleotide polymorphism) mutation in the Clec16a gene had reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controlled beta-cell function and prevented diabetes by regulating mitophagy.

"The ultimate result of the deletion of Clec16a is an accumulation of unhealthy mitochondria, leading to less insulin being secreted by the beta-cells," said senior author Dr. Doris Stoffers, professor of medicine at the University of Pennsylvania. "This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases."

Related Links:

University of Pennsylvania



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Illustration comparing a normal blood vessel and partially blocked vessel due to atherosclerotic plaque build-up (Photo courtesy of Wikimedia Commons).

Mutation Reducing Fatty Acid-Binding Protein Activity Lowers Heart Attack Risk

A team of Finnish cardiovascular disease researchers found that a mutation generating a low-expression variant of fatty acid-binding protein 4 (FABP4), reduced the risk of heart attack and stroke.... Read more

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Design of the minimal viral coat protein C-Sn-B (Photo courtesy of Wageningen University).

Synthetic Virus Designed to Enhance Delivery of New Generation of Pharmaceutical Agents

Dutch scientists have effectively developed an artificial virus that may be used for the delivery of a new generation of pharmaceutical agents, consisting of large biomolecules, by packaging them in a... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.