Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Diabetes Linked to Faulty Mitochondria Disposal Pathway

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Print article
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
A molecular pathway that regulates the disposal of defective mitochondria (mitophagy) has been cited as a potential target for prevention and control of diabetes and certain other diseases.

Clec16a (C-type lectin domain family 16, member A) has been identified as a disease susceptibility gene for type I diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. In the current study investigators at the University of Pennsylvania (Philadelphia, USA) worked with a genetically engineered mouse model that lacked Clec16a in their pancreas.

The investigators reported in the June 19, 2014, online edition of the journal Cell that normally Clec16a interacted with the E3 ubiquitin ligase Nrdp1. Loss of Clec16a led to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a had abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal pancreatic beta-cell function.

Additionally, the investigators reported that patients harboring a pro-diabetic SNP (single nucleotide polymorphism) mutation in the Clec16a gene had reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controlled beta-cell function and prevented diabetes by regulating mitophagy.

"The ultimate result of the deletion of Clec16a is an accumulation of unhealthy mitochondria, leading to less insulin being secreted by the beta-cells," said senior author Dr. Doris Stoffers, professor of medicine at the University of Pennsylvania. "This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases."

Related Links:

University of Pennsylvania



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.