Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Diabetes Linked to Faulty Mitochondria Disposal Pathway

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Print article
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
A molecular pathway that regulates the disposal of defective mitochondria (mitophagy) has been cited as a potential target for prevention and control of diabetes and certain other diseases.

Clec16a (C-type lectin domain family 16, member A) has been identified as a disease susceptibility gene for type I diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. In the current study investigators at the University of Pennsylvania (Philadelphia, USA) worked with a genetically engineered mouse model that lacked Clec16a in their pancreas.

The investigators reported in the June 19, 2014, online edition of the journal Cell that normally Clec16a interacted with the E3 ubiquitin ligase Nrdp1. Loss of Clec16a led to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a had abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal pancreatic beta-cell function.

Additionally, the investigators reported that patients harboring a pro-diabetic SNP (single nucleotide polymorphism) mutation in the Clec16a gene had reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controlled beta-cell function and prevented diabetes by regulating mitophagy.

"The ultimate result of the deletion of Clec16a is an accumulation of unhealthy mitochondria, leading to less insulin being secreted by the beta-cells," said senior author Dr. Doris Stoffers, professor of medicine at the University of Pennsylvania. "This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases."

Related Links:

University of Pennsylvania



Print article

Channels

Drug Discovery

view channel
Image: Schematic diagram of dendrimer structure (Photo courtesy of the University of California, Irvine).

Dendrimer-Transported MicroRNA Shown Effective in Treating Mice with Late-Stage Liver Cancer

Cancer researchers have used nanocarriers called dendrimers to transport a specific tumor growth-inhibiting microRNA (miRNA) to the livers of mice with late-stage liver cancer. MicroRNAs are a class... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.