Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Diabetes Linked to Faulty Mitochondria Disposal Pathway

By BiotechDaily International staff writers
Posted on 08 Jul 2014
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
Image: Mouse fibroblast shows Clec16a (red), the lysosome protein Lamp1 (green), the autophagosome protein LC3 (blue), and DNA (gray). The yellow overlap of the red and green stains shows that Clec16a resides in the endolysosomal compartment, part of the cellular disposal system used in mitophagy (Photo courtesy of the University of Pennsylvania).
A molecular pathway that regulates the disposal of defective mitochondria (mitophagy) has been cited as a potential target for prevention and control of diabetes and certain other diseases.

Clec16a (C-type lectin domain family 16, member A) has been identified as a disease susceptibility gene for type I diabetes, multiple sclerosis, and adrenal dysfunction, but its function is unknown. In the current study investigators at the University of Pennsylvania (Philadelphia, USA) worked with a genetically engineered mouse model that lacked Clec16a in their pancreas.

The investigators reported in the June 19, 2014, online edition of the journal Cell that normally Clec16a interacted with the E3 ubiquitin ligase Nrdp1. Loss of Clec16a led to an increase in the Nrdp1 target Parkin, a master regulator of mitophagy. Islets from mice with pancreas-specific deletion of Clec16a had abnormal mitochondria with reduced oxygen consumption and ATP concentration, both of which are required for normal pancreatic beta-cell function.

Additionally, the investigators reported that patients harboring a pro-diabetic SNP (single nucleotide polymorphism) mutation in the Clec16a gene had reduced islet Clec16a expression and reduced insulin secretion. Thus, Clec16a controlled beta-cell function and prevented diabetes by regulating mitophagy.

"The ultimate result of the deletion of Clec16a is an accumulation of unhealthy mitochondria, leading to less insulin being secreted by the beta-cells," said senior author Dr. Doris Stoffers, professor of medicine at the University of Pennsylvania. "This pathway could be targeted for prevention and control of diabetes and may extend to the pathogenesis of other Clec16a- and Parkin-associated diseases."

Related Links:

University of Pennsylvania



Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Drug Discovery

view channel
Image: Scanning electron microscope (SEM) image of a field of polypyrrole nanowires (Photo courtesy of Dr. Richard Borgens, Purdue University).

Novel Controlled-Release Drug Delivery System Heals Spinal Inflammation in Mouse Model

A novel drug delivery system that allows controllable release of an anti-inflammatory agent directly to the site of inflammation or injury was tested successfully in a mouse model. Investigators at... Read more

Business

view channel

Biopharm Startup to Commercialize Antibody Therapy for Drug Resistant Cancers

A biopharm startup company has licensed the rights to commercialize an antibody-based approach for treatment of drug resistant cancers. The new company, CadheRx Therapeutics (La Jolla, CA, USA), entered into a licensing agreement with Stony Brook University (NY, USA) to develop and market an anticancer technology derived... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.