Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Cholesterol Inhibitor Blocks Breast Cancer Growth in Mouse Model

By BiotechDaily International staff writers
Posted on 02 Jul 2014
Print article
Image: Space-filling model of the cholesterol molecule (Photo courtesy of Wikimedia Commons).
Image: Space-filling model of the cholesterol molecule (Photo courtesy of Wikimedia Commons).
A low molecular weight drug that inhibits cholesterol biosynthesis was found to block the growth of breast tumors by modifying the ratio of proliferative and antiproliferative estrogen receptors.

Investigators at the University of Missouri (Columbia, USA) used breast cancer cell cultures for in vitro studies and BT-474 breast tumor xenografts in nude mice for in vivo studies of tumor progression. They treated these animals with the drug RO 48-8071, a small-molecule inhibitor of oxidosqualene cyclase (OSC, a key enzyme in cholesterol biosynthesis).

Results published in the July 2014 issue of the journal Breast Cancer Research and Treatment revealed that in vitro exposure of estrogen receptor (ER)-positive human breast cancer cells to pharmacological levels of RO 48-8071 reduced cell viability. Administration of RO 48-8071 to mice with BT-474 tumor xenografts prevented tumor growth, with no apparent toxicity.

At the molecular level it was determined that RO 48-8071 degraded the proliferative alpha estrogen receptor (ERalpha) while concomitantly inducing the antiproliferative protein ERbeta. Chemical inhibition or genetic knockdown of ERbeta prevented RO 48-8071-induced loss of cell viability. Importantly, RO 48-8071 had no effect on the viability of normal human mammary cells.

“Cholesterol is a molecule found in all animal cells and serves as a structural component of cell membranes,” said senior author Dr. Salman Hyder, professor of biomedical sciences at the University of Missouri. “Because tumor cells grow rapidly they need to synthesize more cholesterol. Scientists working to cure breast cancer often seek out alternative targets that might slow or stop the progression of the disease, including the elimination of the cancerous cells. In our study, we targeted the production of cholesterol in cancer cells leading to death of breast cancer cells.”

Related Links:

University of Missouri



Print article

Channels

Drug Discovery

view channel
Image: A scanning electron microscope (SEM) image of methicillin-resistant Staphylococcus aureus bacteria (Photo courtesy of the CDC).

Drug Combination Cures MRSA Infection While Preventing Development of Resistance

Treatment with a combination comprising the well-known antibiotic cefdinir and the experimental drug TXA709 cured mice of drug-resistant staphylococcal infections while reducing the development of resistance.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A three-dimensional printer adapted for stem cell production (Photo courtesy of Nano Dimension).

Israeli Developers Demonstrate Prototype Three-Dimensional Bioprinter

Two Israeli companies have combined efforts in the development of three-dimensional printer technology for the production of stem cells. The three-dimensional print electronics developer Nano Dimension... Read more

Business

view channel

Acquisition to Boost Development of Drugs for Neurogenic Conditions

According to a recent announcement, a privately held biotechnology/drug development company is to be acquired by one of the major pharmaceutical manufacturers. The drug manufacturer Merck & Co. (Kenilworth, NJ, USA) has agreed to pay 500 million USD up front for Afferent Pharmaceuticals (San Mateo, CA, USA) and up... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.