Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Mouse Explants Generated from Patients' Circulating Tumor Cells Pave Way for Directed Personalized Chemotherapy

By BiotechDaily International staff writers
Posted on 19 Jun 2014
Print article
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Cancer researchers have isolated circulating tumor cells (CTCs) from patients with small-cell lung cancer (SCLC) and implanted them into immunocompromised mice to use as a model system for developing better treatments for the disease.

SCLC is an aggressive neuroendocrine tumor with early dissemination and poor prognosis that accounts for 15%–20% of lung cancer cases and approximately 200,000 deaths in the United Kingdom each year. Most cases are inoperable, and biopsies to investigate SCLC biology are rarely obtainable. A more promising approach for studying SCLC is by collecting "liquid biopsy" specimens—CTCs, which are prevalent in the blood of SCLC patients.

Investigators at the University of Manchester (United Kingdom) reported in June 1, 2014, online edition of the journal Nature Medicine that CTCs from SCLC patients who either responded to chemotherapy or failed to respond to chemotherapy developed into tumors in immunocompromised mice. The resultant CTC-derived explants (CDXs) mirrored the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX.

Senior author Dr. Caroline Dive, professor of pharmacology and pharmacy at the University of Manchester, said, “Access to sufficient tumor tissue is a major barrier to fully understanding the biology of SCLC. This liquid biopsy is straightforward and not invasive so can be easily repeated and will allow us to study the genetics of each lung cancer patient’s individual tumor. It also means that we may have a feasible way of monitoring patient response to therapy, hopefully allowing us to personalize and tailor individual treatment plans to each patient. We can use these models to help us understand why so many SCLC patients acquire resistance to chemotherapy and to search for and test potential new targeted treatments.”

Related Links:

University of Manchester



Print article

Channels

Genomics/Proteomics

view channel
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).

Stem Cells Derived from Older Individuals May Carry Unsafe Mitochondrial DNA Mutations

Induced pluripotent stem cells (iPSCs) derived from the skin fibroblasts of older individuals have a likelihood of harboring mitochondrial DNA mutations, which may render them unfit for clinical applications.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

DNA Synthesis Specialists Acquire Advanced Software Design Capabilities

An American biotech firm that develops and produces synthetic DNA has established an international presence by purchasing an Israeli genetic design software company. Twist Bioscience Corporation (San Francisco, CA, USA), a company specializing in rapid, high-quality DNA synthesis, announced that Genome Compiler Corporation... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.