Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Mouse Explants Generated from Patients' Circulating Tumor Cells Pave Way for Directed Personalized Chemotherapy

By BiotechDaily International staff writers
Posted on 19 Jun 2014
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Cancer researchers have isolated circulating tumor cells (CTCs) from patients with small-cell lung cancer (SCLC) and implanted them into immunocompromised mice to use as a model system for developing better treatments for the disease.

SCLC is an aggressive neuroendocrine tumor with early dissemination and poor prognosis that accounts for 15%–20% of lung cancer cases and approximately 200,000 deaths in the United Kingdom each year. Most cases are inoperable, and biopsies to investigate SCLC biology are rarely obtainable. A more promising approach for studying SCLC is by collecting "liquid biopsy" specimens—CTCs, which are prevalent in the blood of SCLC patients.

Investigators at the University of Manchester (United Kingdom) reported in June 1, 2014, online edition of the journal Nature Medicine that CTCs from SCLC patients who either responded to chemotherapy or failed to respond to chemotherapy developed into tumors in immunocompromised mice. The resultant CTC-derived explants (CDXs) mirrored the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX.

Senior author Dr. Caroline Dive, professor of pharmacology and pharmacy at the University of Manchester, said, “Access to sufficient tumor tissue is a major barrier to fully understanding the biology of SCLC. This liquid biopsy is straightforward and not invasive so can be easily repeated and will allow us to study the genetics of each lung cancer patient’s individual tumor. It also means that we may have a feasible way of monitoring patient response to therapy, hopefully allowing us to personalize and tailor individual treatment plans to each patient. We can use these models to help us understand why so many SCLC patients acquire resistance to chemotherapy and to search for and test potential new targeted treatments.”

Related Links:

University of Manchester



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A scheme for the generation of induced pluripotent stem cells (IPSC). (1) Isolate and culture donor cells. (2) Transfect stem cell-associated genes into the cells by viral vectors. Red cells indicate the cells expressing the exogenous genes. (3)  Harvest and culture the cells using mitotically inactivated feeder cells. (4) A small subset of the transfected cells forms iPSC cell colonies (Photo courtesy of Wikimedia Commons).

Innovative Technique Produces More Reliable Pluripotent Stem Cells

A recent paper described a more reliable way to induce the formation of pluripotent stem cells (iPSCs) from adult cells in a mouse model. Reliable high-quality iPSCs are needed for the development of... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.