Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Mouse Explants Generated from Patients' Circulating Tumor Cells Pave Way for Directed Personalized Chemotherapy

By BiotechDaily International staff writers
Posted on 19 Jun 2014
Print article
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Image: Histopathologic image of small-cell lung cancer (Photo courtesy of Wikimedia Commons).
Cancer researchers have isolated circulating tumor cells (CTCs) from patients with small-cell lung cancer (SCLC) and implanted them into immunocompromised mice to use as a model system for developing better treatments for the disease.

SCLC is an aggressive neuroendocrine tumor with early dissemination and poor prognosis that accounts for 15%–20% of lung cancer cases and approximately 200,000 deaths in the United Kingdom each year. Most cases are inoperable, and biopsies to investigate SCLC biology are rarely obtainable. A more promising approach for studying SCLC is by collecting "liquid biopsy" specimens—CTCs, which are prevalent in the blood of SCLC patients.

Investigators at the University of Manchester (United Kingdom) reported in June 1, 2014, online edition of the journal Nature Medicine that CTCs from SCLC patients who either responded to chemotherapy or failed to respond to chemotherapy developed into tumors in immunocompromised mice. The resultant CTC-derived explants (CDXs) mirrored the donor patient's response to platinum and etoposide chemotherapy. Genomic analysis of isolated CTCs revealed considerable similarity to the corresponding CDX.

Senior author Dr. Caroline Dive, professor of pharmacology and pharmacy at the University of Manchester, said, “Access to sufficient tumor tissue is a major barrier to fully understanding the biology of SCLC. This liquid biopsy is straightforward and not invasive so can be easily repeated and will allow us to study the genetics of each lung cancer patient’s individual tumor. It also means that we may have a feasible way of monitoring patient response to therapy, hopefully allowing us to personalize and tailor individual treatment plans to each patient. We can use these models to help us understand why so many SCLC patients acquire resistance to chemotherapy and to search for and test potential new targeted treatments.”

Related Links:

University of Manchester



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.