Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Leelamine Blocks Melanoma Growth by Disrupting Cellular Cholesterol Transport

By BiotechDaily International staff writers
Posted on 03 Jun 2014
An experimental chemotherapeutic drug interferes with intracellular cholesterol transport, which kills melanoma cells by disrupting several molecular pathways simultaneously.

The drug, leelamine, which is a natural compound isolated from pine bark, is a diterpene compound and a weak agonist of the cannabinoid CB1 receptor. The structure of leelamine contains no binding oxygen atoms, underscoring its weak association with the CB1 binding site. Leelamine has been reported to inhibit PDK (pyruvate dehydrogenase kinase) activity.

The PI3 kinase (PI3K), MAP kinase (MAPK), and STAT3 molecular pathways promote disease development by being constitutively activated in 50%–70% of melanomas. To identify a drug capable of simultaneously targeting the PI3K, MAPK, and STAT3 cascades, investigators at the Pennsylvania State University (Hershey, USA) screened 480 compounds from a natural product library. Leelamine was identified as the best potential inhibitor.

Results published in the March 31, 2014, online edition of the journal Molecular Cancer Therapeutics revealed that leelamine inhibited the growth of preexisting xenografted melanoma tumors by an average of 60% by targeting the PI3K, MAPK, and STAT3 pathways without affecting animal body weight or blood markers of major organ function. The mechanism of action of leelamine was mediated by disruption of cholesterol transport, causing decreased cellular proliferation and, consequently leading to increased tumor cell apoptosis as well as decreased tumor vascularization.

"Natural products can be a source of effective cancer drugs, and several are being used for treating a variety of cancers," said senior author Dr. Gavin Robertson, professor of pharmacology, pathology, dermatology, and surgery at The Pennsylvania State University. "Over 60% of anticancer agents are derived from plants, animals, marine sources. or microorganisms. However, leelamine is unique in the way that it acts. To a cancer cell, resistance is like a traffic problem in its circuitry. Cancer cells see treatment with a single drug as a road closure and use a detour or other roads to bypass the closure. The cancer cell is addicted to these pathways, and when they are shut down, the bypass routes cannot be used. The result is the cancer cells die."

Related Links:

The Pennsylvania State University



Channels

Genomics/Proteomics

view channel
Image: The bone marrow of mice with normal ether lipid production (top) contains more white blood cells than are found in the bone marrow of mice with ether lipid deficiency (bottom) (Photo courtesy of Washington University School of Medicine).

Inactivating Fatty Acid Synthase Reduces Inflammation by Interfering with Neutrophil Membrane Function

The enzyme fatty acid synthase (FAS) was shown to regulate inflammation by sustaining neutrophil viability through modulation of membrane phospholipid composition. Neutrophils are the most abundant... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Biotech Acquisition Designed to Accelerate the Development and Marketing of Immunosequencing Applications

Adaptive Biotechnologies Corp. (Seattle, WA, USA), a developer of next-generation sequencing (NGS) to profile T-cell and B-cell receptors, has acquired of Sequenta, Inc. (South San Francisco, CA, USA), which is expected to expedite and expand the use of innovative immunosequencing technology for researchers and clinicians... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.