Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Novel Antisense Compound Reverses Alzheimer's Disease Symptoms in Mouse Models

By BiotechDaily International staff writers
Posted on 02 Jun 2014
An antisense oligonucleotide, which suppresses the mRNA required for synthesis of amyloid-beta protein precursor (AbetaPP), decreased AbetaPP expression and amyloid-beta protein (Abeta) production, and reversed Alzheimer's disease symptoms in mouse models.

Investigators at Saint Louis University (MO, USA) had shown previously that their OL-1 antisense compound rapidly crossed the blood-brain barrier, reversed learning and memory impairments, reduced oxidative stress, and restored brain-to-blood efflux of Abeta in the SAMP8 mouse model. These animals carry a natural mutation causing them to overproduce mouse amyloid beta.

In the current study, the investigators tested OL-1 in the Tg2576 Alzheimer's disease mouse model, which comprises animals that had been genetically engineered to overexpress a mutant form of the human amyloid beta precursor gene.

Results published in the May 2014 issue of the Journal of Alzheimer's Disease revealed that treatment of the Tg2576 mice with OL-1 produced the same reversal of Alzheimer's disease symptoms as had been observed earlier in the SAMP8 mice. Biochemical analyses of brain tissue taken from the treated animals showed significant reduction of AbetaPP signaling and a reduction of indicators of neuroinflammation.

"Our findings reinforced the importance of amyloid beta protein in the Alzheimer's disease process. They suggest that an antisense that targets the precursor to amyloid beta protein is a potential therapy to explore to reversing symptoms of Alzheimer's disease," said senior author Dr. Susan Farr, professor of geriatrics at Saint Louis University. "It reversed learning and memory deficits and brain inflammation in mice that are genetically engineered to model Alzheimer's disease. Our current findings suggest that the compound, which is called antisense oligonucleotide (OL-1), is a potential treatment for Alzheimer's disease."

Related Links:

Saint Louis University



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Exosomes loaded with catalase (shown in red) efficiently interact with neurons (shown in black) to protect them from the effects of Parkinson\'s disease (Photo courtesy of Dr. Elena Batrakova, University of North Carolina).

Exome Delivery of the Anti-Oxidant Catalase Reduces Parkinson's Disease Symptoms in Mouse Model

The exosome delivery of the antioxidant enzyme catalase was shown to dramatically reduce symptoms of Parkinson's disease (PD) in a mouse model. Exosomes are cell-derived vesicles that are present in... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.