Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

05 Mar 2017 - 09 Mar 2017
20 Mar 2017 - 23 Mar 2017
12 Apr 2017 - 14 Apr 2017

RNAi Therapy Reduces Huntington's Disease Symptoms in Mouse Model

By BiotechDaily International staff writers
Posted on 01 Jun 2014
ADVERTISEMENT
SARTORIUS AG
A research team used advanced gene therapy techniques to block the production of huntingtin (Htt), the toxic protein found in the brains of patients suffering from the fatal, inherited neurodegenerative disorder, Huntington's disease (HD).

Huntington’s disease is caused by a dominant gene that encodes the huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which contribute to the pathology of the syndrome.

RNA interference (RNAi) therapy that seeks to selectively reduce the expression of Htt has emerged as a potential therapeutic strategy for this disorder. Investigators at the bio-therapeutics research company Genzyme (Framingham, MA, USA) have continued this approach by aiming to lower Htt levels and to correct the behavioral, biochemical, and neuropathological deficits shown to be associated with the YAC128 mouse model of Huntington's disease. To do this they treated these animals with a recombinant adeno-associated viral (AAV) vector that had been designed to deliver siRNA that targeted the degradation of the Htt transcript.

Results that support the continued development of AAV-mediated RNAi as a therapeutic strategy for HD were published in the May 21, 2014, issue of the journal Human Gene Therapy. They revealed that AAV-mediated RNAi was effective at transducing greater than 80% of the cells in the striatum and partially reducing the levels (by about 40%) of both wild-type and mutant Htt in this region. Concomitant with these reductions were significant improvements in behavioral deficits, reduction of striatal Htt aggregates, and partial correction of the aberrant striatal transcriptional profile observed in YAC128 mice.

Of particular importance was the finding that a partial reduction of both the mutant and wild-type Htt levels was not associated with any notable overt neurotoxicity.

Related Links:
Genzyme



Channels

Drug Discovery

view channel
Image: The experimental drug NGI-1 slows cancer growth by blocking glycosylation of the epidermal growth factor receptor (EGFR), which is shown in the above diagram (Photo courtesy of Wikimedia Commons).

Experimental Drug Slows Lung Cancer Growth by Blocking Protein Glycosylation

An interesting new experimental anti-cancer drug slows growth of certain lung tumor cells by preventing the glycosylation of critical cell surface receptor proteins. Asparagine (N)-linked glycosylation... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.