Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

RNAi Therapy Reduces Huntington's Disease Symptoms in Mouse Model

By BiotechDaily International staff writers
Posted on 01 Jun 2014
A research team used advanced gene therapy techniques to block the production of huntingtin (Htt), the toxic protein found in the brains of patients suffering from the fatal, inherited neurodegenerative disorder, Huntington's disease (HD).

Huntington’s disease is caused by a dominant gene that encodes the huntingtin protein. The 5' end of the HD gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of huntingtin is broken down into toxic peptides, which contribute to the pathology of the syndrome.

RNA interference (RNAi) therapy that seeks to selectively reduce the expression of Htt has emerged as a potential therapeutic strategy for this disorder. Investigators at the bio-therapeutics research company Genzyme (Framingham, MA, USA) have continued this approach by aiming to lower Htt levels and to correct the behavioral, biochemical, and neuropathological deficits shown to be associated with the YAC128 mouse model of Huntington's disease. To do this they treated these animals with a recombinant adeno-associated viral (AAV) vector that had been designed to deliver siRNA that targeted the degradation of the Htt transcript.

Results that support the continued development of AAV-mediated RNAi as a therapeutic strategy for HD were published in the May 21, 2014, issue of the journal Human Gene Therapy. They revealed that AAV-mediated RNAi was effective at transducing greater than 80% of the cells in the striatum and partially reducing the levels (by about 40%) of both wild-type and mutant Htt in this region. Concomitant with these reductions were significant improvements in behavioral deficits, reduction of striatal Htt aggregates, and partial correction of the aberrant striatal transcriptional profile observed in YAC128 mice.

Of particular importance was the finding that a partial reduction of both the mutant and wild-type Htt levels was not associated with any notable overt neurotoxicity.

Related Links:
Genzyme



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.