Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Monoclonal Antibody Blocks B-Cell Receptor and Eases Leukemia Burden in Mouse Model

By BiotechDaily International staff writers
Posted on 26 May 2014
Blocking the B-cell-activating factor receptor (BAFF-R) on leukemia cells has been suggested as a new approach for treating an acute, chemotherapy-resistant form of childhood leukemia.

Acute lymphoblastic leukemia (ALL) is characterized by an excessive amount of white blood cell precursors (B-cell lymphoblasts) in the blood and bone marrow. B-cell lineage ALL (pre-B ALL) accounts for 80% to 85% of childhood ALL.

BAFF-R is encoded in humans by the TNFRSF13C (tumor necrosis factor receptor superfamily member 13C) gene. BAFF enhances B-cell survival in vitro and is a regulator of the peripheral B-cell population. Overexpression of BAFF in mice results in mature B-cell hyperplasia and symptoms of systemic lupus erythematosus (SLE). Also, some SLE patients have increased levels of BAFF in their serum. Therefore, it has been proposed that abnormally high levels of BAFF may contribute to the pathogenesis of autoimmune diseases by enhancing the survival of autoreactive B cells. The protein encoded by the TNFRSF13C gene is a receptor for BAFF and is a type III transmembrane protein containing a single extracellular cysteine-rich domain.

It is thought that BAFF-R is the principal receptor required for BAFF-mediated mature B-cell survival. Since BAFF-R is expressed on precursor pre-B ALL cells but not on their pre-B normal counterparts, selective killing of ALL cells is possible by targeting this receptor.

Investigators at the University of Southern California (USA) tested a novel humanized anti–BAFF-R monoclonal antibody in a study carried out on leukemia cell cultures and in an immunodeficient mouse transplant model.

They reported in the May 13, 2014, online edition of the journal Molecular Cancer Therapeutics that the antibodies significantly stimulated natural killer cell-mediated killing of different human patient-derived ALL cells. Moreover, incubation of such ALL cells with these antibodies stimulated phagocytosis by macrophages. When this was tested in the immunodeficient transplant model, mice that were treated with the antibody had a significantly decreased leukemia burden in bone marrow and spleen.

"We have now demonstrated that BAFF-R is a strong potential therapeutic target for treating chemotherapy-resistant leukemia cells, without damaging healthy cells," said senior author Dr. Nora Heisterkamp, professor of research, pediatrics, and pathology at the University of Southern California. "We found that human pre-B ALL cells could be even further reduced when the anti-BAFF-R antibody was combined with chemotherapy or another therapeutic agent. We are looking at a potential one, two punch."

Related Links:

University of Southern California



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.