Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Mass Spectrometry Technology Maps Chemicals as They Migrate Into Skin

By BiotechDaily International staff writers
Posted on 14 May 2014
A mass spectrometry technique gaining acceptance for medical applications such as imaging tumor surfaces can also be used to analyze the migration of small-molecule compounds applied to the skin. Because skin is such a complicated organ, the technology could be a helpful for developing transdermal drugs.

The study’s findings were published April 28, 2014, in the Journal of the American Chemical Society. Stanford University (Stanford, CA, USA) chemistry Profs. Richard N. Zare and Justin Du Bois, postdoc Livia S. Eberlin, graduate student John V. Mulcahy, and colleagues revealed that desorption electrospray ionization-mass spectrometry (DESI-MS) imaging has many advantages over other approaches that require complicated preparation of skin samples.

Moreover, DESI-MS imaging can be performed under ambient settings, instead of in a vacuum condition, as other MS methods require. Furthermore, test compounds do not have to be radioactively labeled or tagged with unwieldy dye molecules that could affect the compounds’ normal migration through skin. “That’s why this method is very appealing,” said Mark R. Prausnitz, a chemical and biomolecular engineering professor who heads the Laboratory for Drug Delivery at Georgia Institute of Technology (Atlanta, GA, USA).

DESI-MS was developed 10 years ago and involves spraying charged solvent droplets at a surface. Backsplash droplets containing dissolved molecules are then captured and examined using a mass spectrometer. The technology has been used for medical applications such as imaging drugs in tissue samples.

The Stanford scientists chose a number of small molecules that change sodium channels in skin cells, including lidocaine and a shellfish toxin. They applied them to the surface of skin samples and were able to track the compounds’ migration to a depth of 1.2 mm.

Such studies of drug migration are required to enlarge the limited selection of transdermal drugs, according to Prof. Prausnitz. Only approximately 30 agents, such as nicotine, have transdermal versions. The drugs must be small, lipophilic, and effective at a low dose. With this newly adapted tool, however, scientists could more readily study methods to enhance skin permeation, Prof. Prausnitz reported. “We’re very interested in the pathway--which part of the skin did the drug go through?”

Related Links:

Stanford University



Channels

Genomics/Proteomics

view channel
Image: Nanoscale artificial antigen presenting cells (nano-aAPCs) bound to receptors on the T-cell surface (Photo courtesy of Dr. Karlo Perica, Johns Hopkins University).

Promising Cancer Immunotherapy Method Relies on Artificial Magnetic Antigen Presenting Cells

Cancer researchers have developed a method based on magnetic nanoparticles that enables the rapid extraction, enrichment, and expansion of a T-cell population that shows great promise as a tool for immunotherapy.... Read more

Drug Discovery

view channel
Image: The microneedle patch can dissolve in the skin, delivering the flu vaccine painlessly (Photo courtesy of Dr. Shinsaku Nakagawa, Osaka University).

Japanese Researchers Demonstrate Novel Transcutaneous Influenza Vaccination Using a Dissolving Microneedle Patch

Vaccination via a biodegradable microneedle patch was shown to generate immune response to various strains of the influenza virus that were equal to or stronger than those induced by traditional hypodermic... Read more

Business

view channel

Partners to Seek Novel Drugs to Treat Fibrotic Diseases

A global biopharmaceutical company and an American university hospital-based research institute have agreed to collaborate on the diagnosis and cure of fibrotic diseases. Fibrotic diseases such as scleroderma, renal fibrosis, and idiopathic pulmonary fibrosis are characterized by the gradual formation of excess fibrous... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.