Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Experimental Drug Protects Animal Model from Measles-Like Virus

By BiotechDaily International staff writers
Posted on 04 May 2014
Image: Ultrastructural appearance of a single measles virus particle as revealed by thin-section transmission electron microscopy (TEM). It is 100–200 nm in diameter, with a core of single-stranded RNA, and is closely related to the rinderpest and canine distemper viruses (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Image: Ultrastructural appearance of a single measles virus particle as revealed by thin-section transmission electron microscopy (TEM). It is 100–200 nm in diameter, with a core of single-stranded RNA, and is closely related to the rinderpest and canine distemper viruses (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Working with an animal model that mimics measles in humans, a team of molecular virologists have verified that a novel antiviral drug may complement the currently used vaccine and lead to eradication of the disease.

To better study the measles virus under laboratory conditions investigators at Georgia State University (Atlanta, USA) and colleagues at Emory University (Atlanta, GA, USA) and the Paul-Ehrlich Institute (Langen, Germany) used zoonotic Canine distemper virus (CDV), which induces a disease in ferrets with 100% lethality.

The investigators used the ferret model to evaluate the experimental drug ERDRP-0519, which targets the viral RNA polymerase. This enzyme is required for replication of the virus, as it catalyzes the synthesis of a complementary strand of RNA from the original viral RNA template.

Results reported in the April 16, 2014, issue of the journal Science Translational Medicine revealed that prophylactic oral drug treatment of the ferrets protected them from a lethal dose of CDV administered intranasally. Ferrets that received the drug after having been infected with the same dose of virus showed low-grade viral loads, remained asymptomatic, and recovered from infection, whereas control animals succumbed to the disease. Animals that had recovered from CDV infection demonstrated a robust immune response and were protected against re-challenge with a lethal CDV dose.

The investigators stated that the drug is not intended as a substitute for vaccination, but as an additional weapon in a concerted effort to eliminate the disease. "The emergence of strong antiviral immunity in treated animals is particularly encouraging, since it suggests that the drug may not only save an infected individual from disease but contribute to closing measles immunity gaps in a population," said senior author Dr. Richard Plemper, professor in the center for inflammation, immunity, and infection at Georgia State University.

Related Links:

Georgia State University
Emory University
Paul-Ehrlich Institute



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.