Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Approach Restores Effectiveness of Older Antibiotics

By BiotechDaily International staff writers
Posted on 29 Apr 2014
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings.

These bacteria have become drug resistant by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems.

Microbiologists at the University of South Carolina (Columbia, SC, USA) introduced a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells.

The β-lactam structure in a molecule is something that many bacteria are adverse to. It greatly hinders their ability to reproduce by cell division, and so chemists have for years spent time making molecules that all contain the β-lactam structural motif. One of the most effective bacterial defenses is an enzyme called β-lactamase, which chews up the β-lactam structure. Some bacteria, such as MRSA, have developed the ability to biosynthesize and release β-lactamase when needed. It is a devastating defense because it is so general, targeting the common structural motif in all of the many β-lactam antibiotics.

The interdisciplinary team also showed that the antimicrobial effectiveness of the four β-lactams studied in detail was enhanced by the polymer. They prepared a cobaltocenium metallopolymer that greatly slowed the destructiveness of β-lactamase on a model β-lactam molecule (nitrocefin). The enhancement was modest against two strains, but very pronounced with the hospital-associated strain of MRSA (HA-MRSA). The four antibiotics penicillin-G, amoxicillin, ampicillin, and cefazolin, were protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties.

The study was published on March 17, 2014, in the Journal of the American Chemical Society.

Related Links:

University of South Carolina



comments powered by Disqus

Channels

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.