Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

New Approach Restores Effectiveness of Older Antibiotics

By BiotechDaily International staff writers
Posted on 29 Apr 2014
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings.

These bacteria have become drug resistant by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems.

Microbiologists at the University of South Carolina (Columbia, SC, USA) introduced a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells.

The β-lactam structure in a molecule is something that many bacteria are adverse to. It greatly hinders their ability to reproduce by cell division, and so chemists have for years spent time making molecules that all contain the β-lactam structural motif. One of the most effective bacterial defenses is an enzyme called β-lactamase, which chews up the β-lactam structure. Some bacteria, such as MRSA, have developed the ability to biosynthesize and release β-lactamase when needed. It is a devastating defense because it is so general, targeting the common structural motif in all of the many β-lactam antibiotics.

The interdisciplinary team also showed that the antimicrobial effectiveness of the four β-lactams studied in detail was enhanced by the polymer. They prepared a cobaltocenium metallopolymer that greatly slowed the destructiveness of β-lactamase on a model β-lactam molecule (nitrocefin). The enhancement was modest against two strains, but very pronounced with the hospital-associated strain of MRSA (HA-MRSA). The four antibiotics penicillin-G, amoxicillin, ampicillin, and cefazolin, were protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties.

The study was published on March 17, 2014, in the Journal of the American Chemical Society.

Related Links:

University of South Carolina



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.