Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

By BiotechDaily International staff writers
Posted on 08 Apr 2014
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).
A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.

Investigators at the Sanford-Burnham Medical Research Institute (La Jolla, CA, USA) and the University of California, San Diego (USA) placed CyT49 pancreatic islets derived from human embryonic stem cells (hESCs) into TheraCyte (Laguna Hills, CA, USA) encapsulation devices and transplanted the devices into a diabetic mouse model.

The TheraCyte system for encapsulating and transplanting cells is a thin membrane-bound polymeric chamber. It is fabricated from biocompatible membranes, which protect allogeneic cells from rejection by the recipient and, when implanted subcutaneously, induce the development of blood capillaries close to the membranes. This vascularization feature provides a rich blood supply to nourish the tissues within the membranes, aids in the communication of implanted cells with the host, and assures rapid uptake of therapeutic molecules. The TheraCyte system is protected by 20 US patents and multiple foreign patent filings in Europe and Japan.

The investigators monitored human insulin secretion and employed bioluminescent imaging to evaluate the maturation, growth, and containment of the encapsulated islet progenitors. They reported in the March 24, 2014, online edition of the journal Stem Cell Research that human insulin was detectable by seven weeks post-transplant and increased 17-fold over the course of eight weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Furthermore, bioluminescent imaging revealed that hESCs remained fully contained in the encapsulation device for up to 150 days, the longest period tested.

“Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin dependent-diabetes,” said senior author Dr. Pamela Itkin-Ansari, assistant professor of pediatrics at the University of California, San Diego and adjunct assistant professor at the Sanford-Burnham Medical Research Institute. “We have shown that encapsulated hESC-derived insulin-producing cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule. These results are important because it means that the encapsulated cells are both fully functional and retrievable.”

“We were thrilled to see that the cells remained fully encapsulated for up to 150 days, the longest period tested,” said Dr. Itkin-Ansari. “Equally important is that we show that the progenitor cells develop glucose-responsiveness without a significant change in mass – meaning they do not outgrow their capsule, and, of course, we want to learn how long a capsule will function once implanted. Given these goals and continued successful results, I expect to see the technology become a treatment option for patients with insulin dependent-diabetes.”

Related Links:

Sanford-Burnham Medical Research Institute
University of California, San Diego
TheraCyte, Inc.



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.