Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

ATP-Triggered Nanoparticles Effectively Kill Breast Cancer Cells in Mouse Model

By BiotechDaily International staff writers
Posted on 25 Mar 2014
Image: The structure of the ATP-triggered nanoparticle (left) and how the nanoparticles shrink a tumor (right) (Photo courtesy of North Carolina State University).
Image: The structure of the ATP-triggered nanoparticle (left) and how the nanoparticles shrink a tumor (right) (Photo courtesy of North Carolina State University).
A recent paper describes novel nanoparticles that transport toxic anticancer drugs specifically to tumor cells where they are engulfed and induced to release their cargo by the high intracellular concentration of adenosine-5'-triphosphate (ATP).

The nanoparticles, which were composed of a liposomal core enclosed in a cross-linked hyaluronic acid (HA)-based gel shell (designated Gelipo), were devised by a team of investigators at North Carolina State University (Raleigh, USA) and the University of North Carolina (Chapel Hill, USA). The cores of the nanoparticles were loaded with an ATP-binding aptamer-incorporated DNA motif that was able to selectively release incorporated molecules of the cancer drug doxorubicin (Dox) via a conformational switch when in an ATP-rich environment. Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids.

The nanoparticles were tested on a mouse cancer model. Following injection of the nanoparticles into mice carrying the MDA-MB-231 xenograft tumor, the HA shells were degraded by hyaluronidase (HAase) enzyme that was concentrated in the tumor environment. This resulted in the rapid internalization of the liposomes, which, in turn, caused release of the aptamer-DNA-Dox molecules into the tumor cells. The high concentration of ATP inside the tumor cells then caused the aptamer-DNA molecules to unfold and release the Dox, which killed the cells.

Results reported in the March 11, 2014, online edition of the journal Nature Communications showed that the new type of nanoparticles were 3.6 times more effective against MDA-MB-231 human breast cancer cells than previously tested nanoparticles that did not incorporate an ATP-triggered component.

"This is a proof of concept, but we have demonstrated there is now a new tool for introducing anti-cancer drugs directly into cancer cells—and that should make drug treatments significantly more effective," said senior author Dr. Zhen Gu, assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "We also believe that we will be able to make the technique even more targeted by manipulating ATP levels in specific areas."

Related Links:

North Carolina State University
University of North Carolina



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.