Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Human Cell Line Produces High-Quality RSV for Vaccine Production

By BiotechDaily International staff writers
Posted on 23 Mar 2014
Image: Electron micrograph reveals the morphologic traits of the respiratory syncytial virus (RSV). The virion is variable in shape, and size (average diameter of between 120–300 nm). RSV is the most common cause of bronchiolitis and pneumonia among infants and children under one year of age (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Image: Electron micrograph reveals the morphologic traits of the respiratory syncytial virus (RSV). The virion is variable in shape, and size (average diameter of between 120–300 nm). RSV is the most common cause of bronchiolitis and pneumonia among infants and children under one year of age (Photo courtesy of the CDC - [US] Centers for Disease Control and Prevention).
Cooperation between German and American biotechnology companies may pave the way for development of a vaccine to prevent RSV (respiratory syncytial virus) respiratory infections, which have been estimated to cause nearly 7% of the deaths of infants that die during their first year of life.

The companies involved are CEVEC Pharmaceuticals (Cologne, Germany), a clinical stage pharmaceutical company focusing on the development of highly potent protein and vaccine expression systems based on human CAP cells and Paragon Bioservices Inc. (Baltimore, MD, USA), a leading American biopharmaceutical contract manufacturer.

CEVEC has developed a new and proprietary expression system for biopharmaceuticals offering significant advantages over existing production technologies. Their CAP cells are an immortalized cell line derived from primary human amniocytes that meet the highest ethical and regulatory standards. CEVEC´s CAP cells have proven highly efficient in the production of a broad range of otherwise difficult to express glycoproteins. These molecules are produced at high titers with authentic post-translational modifications in serum-free suspension culture. Their ability to generate human glycosylation patterns also makes CAP cells a valuable tool for vaccine production.

The CEVEC/Paragon project has succeeded in producing RSV in CAP cells that show a high-level of functional G-protein resulting in a very effective RSV vaccine with positive impact on attenuated-vaccine studies.

"Again CAP cells prove their enormous potential and significant advantages over many currently used production systems for vaccines," said Dr. Rainer Lichtenberger, COO of CEVEC. "Next to Cytomegalovirus, influenza, and others, this is another striking example that CAP cells can efficiently propagate disease relevant human viruses. We were very pleased to work with Paragon on this project and benefited from their experience in vaccine production. This collaboration was extremely pleasant and successful."

Marco Chacón, CEO of Paragon said, "This teamwork pays not only for CEVEC, but also for Paragon. With use of CAP cells we can offer our customers a unique production system to meet the challenges of their vaccine target. With this highly ambitious project we have again proven our expertise in this competitive business."

Related Links:

CEVEC Pharmaceuticals
Paragon Bioservices Inc.



Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.