Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Antibody Treatment Slows Lung Cancer Growth in Mouse Model

By BiotechDaily International staff writers
Posted on 17 Mar 2014
Image: Space-filling model of the peptide hormone vasopressin (Photo courtesy of Wikimedia Commons).
Image: Space-filling model of the peptide hormone vasopressin (Photo courtesy of Wikimedia Commons).
A monoclonal antibody that specifically binds to the surface marker ProAVP (pro-vasopressin) impaired the growth of small-cell lung cancer tumors in a mouse model.

Investigators at Dartmouth College (Hanover, NH, USA) previously had demonstrated that human small-cell lung cancer (SCLC) seemed to universally express the vasopressin gene, and this led to the presence of a cell surface marker representing the entire pro-hormone precursor.

Vasopressin, which is derived from a pro-hormone precursor that is synthesized in the hypothalamus and stored in vesicles at the posterior pituitary, is a peptide hormone that controls the reabsorption of molecules in the tubules of the kidneys by affecting the tissue's permeability. It also increases peripheral vascular resistance, which in turn increases arterial blood pressure. It plays a key role in homeostasis, by the regulation of water, glucose, and salts in the blood.

The investigators treated a group of SCLC mice with MAG-1, a mouse monoclonal antibody specific for the pro-vasopressin C-terminal moiety. They reported in the February 14, 2014, online edition of the journal Frontiers in Oncology that the antibody attached to SCLC cells and it was internalized. Antibody treatment decreased the rate of increase in tumor size by half, and doubling time by about three-fold. Normal tissues seemed not to be affected.

"We are developing methods of antibody-targeted treatment for recurrent small-cell lung cancer," said senior author Dr. William G. North, professor of physiology at Dartmouth College. "Targeting with a humanized MAG-1 can likely be effective, especially when given in combination with chemotherapy, for treating a deadly disease for which there is no effective therapy."

Related Links:

Dartmouth College



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.