Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Antibody Treatment Slows Lung Cancer Growth in Mouse Model

By BiotechDaily International staff writers
Posted on 17 Mar 2014
Image: Space-filling model of the peptide hormone vasopressin (Photo courtesy of Wikimedia Commons).
Image: Space-filling model of the peptide hormone vasopressin (Photo courtesy of Wikimedia Commons).
A monoclonal antibody that specifically binds to the surface marker ProAVP (pro-vasopressin) impaired the growth of small-cell lung cancer tumors in a mouse model.

Investigators at Dartmouth College (Hanover, NH, USA) previously had demonstrated that human small-cell lung cancer (SCLC) seemed to universally express the vasopressin gene, and this led to the presence of a cell surface marker representing the entire pro-hormone precursor.

Vasopressin, which is derived from a pro-hormone precursor that is synthesized in the hypothalamus and stored in vesicles at the posterior pituitary, is a peptide hormone that controls the reabsorption of molecules in the tubules of the kidneys by affecting the tissue's permeability. It also increases peripheral vascular resistance, which in turn increases arterial blood pressure. It plays a key role in homeostasis, by the regulation of water, glucose, and salts in the blood.

The investigators treated a group of SCLC mice with MAG-1, a mouse monoclonal antibody specific for the pro-vasopressin C-terminal moiety. They reported in the February 14, 2014, online edition of the journal Frontiers in Oncology that the antibody attached to SCLC cells and it was internalized. Antibody treatment decreased the rate of increase in tumor size by half, and doubling time by about three-fold. Normal tissues seemed not to be affected.

"We are developing methods of antibody-targeted treatment for recurrent small-cell lung cancer," said senior author Dr. William G. North, professor of physiology at Dartmouth College. "Targeting with a humanized MAG-1 can likely be effective, especially when given in combination with chemotherapy, for treating a deadly disease for which there is no effective therapy."

Related Links:

Dartmouth College



comments powered by Disqus

Channels

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.