Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Shutting Down Multiple DNA Synthesis Pathways Cures Leukemia in Mouse Model

By BiotechDaily International staff writers
Posted on 10 Mar 2014
Print article
Image: The number of leukemia cells (red) was greatly reduced in treated (right) vs. untreated (left) mice while sparing any significant damage to normal blood cells (black) (Photo courtesy of the Rockefeller University Press).
Image: The number of leukemia cells (red) was greatly reduced in treated (right) vs. untreated (left) mice while sparing any significant damage to normal blood cells (black) (Photo courtesy of the Rockefeller University Press).
Drug treatment that combined inhibitors of both the de novo (DNP) and salvage (NSP) pathways for DNA synthesis cured acute lymphoblastic leukemia (ALL) in a mouse model of the disease.

Investigators at the University of California, Los Angeles (USA) blocked the DNP synthesis of DNA by treating ALL mice with thymidine. This treatment was not sufficient to prevent growth of cancer cells, which switched to the NSP pathway.

To block the NSP pathway the investigators administered DI-39, a new high affinity small-molecule inhibitor of the rate-limiting enzyme DC kinase (DCK). DCK is required for the phosphorylation of several deoxyribonucleosides and their nucleoside analogs. Deficiency of DCK is associated with resistance to antiviral and anticancer chemotherapeutic agents. Conversely, increased DCK activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. DCK is clinically important because of its relationship to drug resistance and sensitivity.

The investigators reported in the February 24, 2014, online edition of the Journal of Experimental Medicine that a therapeutic regimen that simultaneously co-targeted the DNP pathway with thymidine and the NSP pathway with DI-39 was effective against ALL models in mice, without detectable host toxicity.

"This new dual targeting approach shows that we can overcome the redundancy in DNA synthesis in ALL cells and identifies a potential target for metabolic intervention in ALL, and possibly in other hematological cancers," said senior author Dr. Caius Radu, associate professor of molecular and medical pharmacology at the University of California, Los Angeles. "This interdisciplinary study not only advances our understanding of DNA synthesis in leukemic cells but also identifies targeted metabolic intervention as a new therapeutic approach in ALL. Clinical trials will be required to establish whether these promising findings will translate into a new therapeutic approach for ALL."

Related Links:

University of California, Los Angeles



Print article

Channels

Genomics/Proteomics

view channel
Image: The green-labeled cells show a basal cell carcinoma in mouse tail epidermis derived from a single mutant stem cell and expanding out of the normal epidermis stained in red (Photo courtesy of Adriana Sánchez-Danés, Université Libre de Bruxelles).

Stem Cells Not Progenitors Can Trigger Skin Cancer Growth

Cancer researchers have discovered that stem cells can initiate development of malignant skin tumors, while progenitor cells are limited to triggering only benign growths. A progenitor cell is similar... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Sartorius Acquires US Start-up ViroCyt

Sartorius AG (Göttingen, Germany), a pharmaceutical and laboratory equipment provider, has acquired ViroCyt Incorporated (Broomfield, CO, USA), a start-up in the field of rapid virus quantification, in a deal valued at approximately USD 16 million. ViroCyt’s automated platform integrates instruments, software and reagents... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.