Features Partner Sites Information LinkXpress
Sign In
Demo Company

Shutting Down Multiple DNA Synthesis Pathways Cures Leukemia in Mouse Model

By BiotechDaily International staff writers
Posted on 10 Mar 2014
Print article
Image: The number of leukemia cells (red) was greatly reduced in treated (right) vs. untreated (left) mice while sparing any significant damage to normal blood cells (black) (Photo courtesy of the Rockefeller University Press).
Image: The number of leukemia cells (red) was greatly reduced in treated (right) vs. untreated (left) mice while sparing any significant damage to normal blood cells (black) (Photo courtesy of the Rockefeller University Press).
Drug treatment that combined inhibitors of both the de novo (DNP) and salvage (NSP) pathways for DNA synthesis cured acute lymphoblastic leukemia (ALL) in a mouse model of the disease.

Investigators at the University of California, Los Angeles (USA) blocked the DNP synthesis of DNA by treating ALL mice with thymidine. This treatment was not sufficient to prevent growth of cancer cells, which switched to the NSP pathway.

To block the NSP pathway the investigators administered DI-39, a new high affinity small-molecule inhibitor of the rate-limiting enzyme DC kinase (DCK). DCK is required for the phosphorylation of several deoxyribonucleosides and their nucleoside analogs. Deficiency of DCK is associated with resistance to antiviral and anticancer chemotherapeutic agents. Conversely, increased DCK activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. DCK is clinically important because of its relationship to drug resistance and sensitivity.

The investigators reported in the February 24, 2014, online edition of the Journal of Experimental Medicine that a therapeutic regimen that simultaneously co-targeted the DNP pathway with thymidine and the NSP pathway with DI-39 was effective against ALL models in mice, without detectable host toxicity.

"This new dual targeting approach shows that we can overcome the redundancy in DNA synthesis in ALL cells and identifies a potential target for metabolic intervention in ALL, and possibly in other hematological cancers," said senior author Dr. Caius Radu, associate professor of molecular and medical pharmacology at the University of California, Los Angeles. "This interdisciplinary study not only advances our understanding of DNA synthesis in leukemic cells but also identifies targeted metabolic intervention as a new therapeutic approach in ALL. Clinical trials will be required to establish whether these promising findings will translate into a new therapeutic approach for ALL."

Related Links:

University of California, Los Angeles

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.