Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

DNA-Constructed Nanoparticles Safely Target Tumors

By BiotechDaily International staff writers
Posted on 17 Feb 2014
A team of Canadian researchers has discovered a way to assemble “building blocks” of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors.

The study, led by Prof. Warren Chan, of University of Institute of Biomaterials & Biomedical Engineering (IBBME; ON, Canada) and the Donnelly Center for Cellular & Biomolecular Research, was published February 2014 in the journal Nature Nanotechnology.

“To get materials into a tumor they need to be a certain size,” explained Prof. Chan. “Tumors are characterized by leaky vessels with holes roughly 50–500 nm in size, depending on the tumor type and stage. The goal is to deliver particles small enough to get through the holes and ‘hang out’ in the tumor’s space for the particles to treat or image the cancer. If particle is too large, it can’t get in, but if the particle is too small, it leaves the tumor very quickly.”

Prof. Chan and his researchers solved this problem by creating modular structures “glued” together with DNA. “We’re using a ‘molecular assembly’ model—taking pieces of materials that we can now fabricate accurately and organizing them into precise architectures, like putting LEGO blocks together,” said Leo Chou, a fifth-year PhD, student at IBBME and first author of the paper. “The major advantage of this design strategy is that it is highly modular, which allows you to ‘swap’ components in and out,” he said. “This makes it very easy to create systems with multiple functions, or screen a large library of nanostructures for desirable biological behaviors."

The long-term risk of toxicity from particles that linger in the body, however, has been a serious hurdle to nanomedical research. “Imagine you’re a cancer patient in your 30s,” said Prof. Chan. “And you’ve had multiple injections of these metal particles. By the time you’re in your mid-40s these are likely to be retained in your system and could potentially cause other problems.”

Although DNA is flexible, and over time, the body’s natural enzymes cause the DNA to degrade, and the grouping breaks apart. The body then eliminates the smaller particles safely and easily. But while the researchers are excited about this breakthrough, Prof. Chan stressed that a lot more details need to be determined. “We need to understand how DNA design influences the stability of things, and how a lack of stability might be helpful or not,” he said. “The use of assembly to build complex and smart nanotechnology for cancer applications is still in the very primitive stage of development. Still, it is very exciting to be able to see and test the different nanoconfigurations for cancer applications.”

Related Links:
University of Toronto’s Institute of Biomaterials & Biomedical Engineering



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.