Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

DNA-Constructed Nanoparticles Safely Target Tumors

By BiotechDaily International staff writers
Posted on 17 Feb 2014
A team of Canadian researchers has discovered a way to assemble “building blocks” of gold nanoparticles as the vehicle to deliver cancer medications or cancer-identifying markers directly into cancerous tumors.

The study, led by Prof. Warren Chan, of University of Institute of Biomaterials & Biomedical Engineering (IBBME; ON, Canada) and the Donnelly Center for Cellular & Biomolecular Research, was published February 2014 in the journal Nature Nanotechnology.

“To get materials into a tumor they need to be a certain size,” explained Prof. Chan. “Tumors are characterized by leaky vessels with holes roughly 50–500 nm in size, depending on the tumor type and stage. The goal is to deliver particles small enough to get through the holes and ‘hang out’ in the tumor’s space for the particles to treat or image the cancer. If particle is too large, it can’t get in, but if the particle is too small, it leaves the tumor very quickly.”

Prof. Chan and his researchers solved this problem by creating modular structures “glued” together with DNA. “We’re using a ‘molecular assembly’ model—taking pieces of materials that we can now fabricate accurately and organizing them into precise architectures, like putting LEGO blocks together,” said Leo Chou, a fifth-year PhD, student at IBBME and first author of the paper. “The major advantage of this design strategy is that it is highly modular, which allows you to ‘swap’ components in and out,” he said. “This makes it very easy to create systems with multiple functions, or screen a large library of nanostructures for desirable biological behaviors."

The long-term risk of toxicity from particles that linger in the body, however, has been a serious hurdle to nanomedical research. “Imagine you’re a cancer patient in your 30s,” said Prof. Chan. “And you’ve had multiple injections of these metal particles. By the time you’re in your mid-40s these are likely to be retained in your system and could potentially cause other problems.”

Although DNA is flexible, and over time, the body’s natural enzymes cause the DNA to degrade, and the grouping breaks apart. The body then eliminates the smaller particles safely and easily. But while the researchers are excited about this breakthrough, Prof. Chan stressed that a lot more details need to be determined. “We need to understand how DNA design influences the stability of things, and how a lack of stability might be helpful or not,” he said. “The use of assembly to build complex and smart nanotechnology for cancer applications is still in the very primitive stage of development. Still, it is very exciting to be able to see and test the different nanoconfigurations for cancer applications.”

Related Links:
University of Toronto’s Institute of Biomaterials & Biomedical Engineering



Channels

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.