Features Partner Sites Information LinkXpress
Sign In
Demo Company

Experimental Drug Reduces Brain Inflammation in Diabetic Rat Model

By BiotechDaily International staff writers
Posted on 11 Feb 2014
Print article
Image: The Zucker diabetic fatty (ZDF) rat compared to a normal laboratory rat (Photo courtesy of medic, Japan).
Image: The Zucker diabetic fatty (ZDF) rat compared to a normal laboratory rat (Photo courtesy of medic, Japan).
A recent paper reported that peptides that mimic the activity of thioredoxin were able to inhibit the development of inflammation in the brains of Zucker diabetic fatty (ZDF) rats.

Recent studies have linked the high levels of sugar in the blood of diabetics to the development of dementia, impaired cognition, and a decline of brain function. Diabetics have also been found to have twice the risk of developing Alzheimer's disease compared to non-diabetics.

Male Zucker diabetic fatty (ZDF) rats are a highly regarded model system for the study of diabetes. These animals develop obesity and insulin resistance at a young age, and then with aging, progressively develop hyperglycemia. This hyperglycemia is associated with impaired pancreatic beta-cell function, loss of pancreatic beta-cell mass, and decreased responsiveness of liver and extrahepatic tissues to the actions of insulin and glucose.

The ZDF model system was chosen by investigators at the Hebrew University of Jerusalem (Israel) to elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes.

The investigators monitored the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brains of ZDF rats and in an in vitro culture system based on human neuroblastoma SH-5HY5 cells. Thioredoxins are proteins that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange. They are found in nearly all known organisms and are essential for life in mammals.

Results published in the January 9, 2014, online edition of the journal Redox Biology revealed that despite high glucose levels in the blood of the ZDF rats, the TXM peptide CB3 significantly reduced the activity of proapoptotic MAPK kinases and retarded premature brain cell death. These results indicated that the CB3 was able to cross the blood-brain barrier and improve the condition of the brain cells by inhibiting various inflammatory processes. Furthermore, CB3 prevented apoptosis in human neuroblastoma SH-SY5Y cells.

Senior author Dr. Daphne Atlas, professor of neurochemistry at the Hebrew University of Jerusalem, said, "This study paves the way for preventive treatment of damages caused by high sugar levels, and for reducing the risk of dementia and Alzheimer's disease in diabetics or people with elevated blood sugar levels. Following the successful animal testing of the molecule we developed, we hope to explore its potential benefit for treating cognitive and memory impairments caused by diabetes on humans.”

Use of the CB3 molecule has been protected by a patent registered by the Yissum Research Development Company, the technology transfer arm of the Hebrew University of Jerusalem.

Related Links:

Hebrew University of Jerusalem 

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.