Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Experimental Drug Reduces Brain Inflammation in Diabetic Rat Model

By BiotechDaily International staff writers
Posted on 11 Feb 2014
Print article
Image: The Zucker diabetic fatty (ZDF) rat compared to a normal laboratory rat (Photo courtesy of medic, Japan).
Image: The Zucker diabetic fatty (ZDF) rat compared to a normal laboratory rat (Photo courtesy of medic, Japan).
A recent paper reported that peptides that mimic the activity of thioredoxin were able to inhibit the development of inflammation in the brains of Zucker diabetic fatty (ZDF) rats.

Recent studies have linked the high levels of sugar in the blood of diabetics to the development of dementia, impaired cognition, and a decline of brain function. Diabetics have also been found to have twice the risk of developing Alzheimer's disease compared to non-diabetics.

Male Zucker diabetic fatty (ZDF) rats are a highly regarded model system for the study of diabetes. These animals develop obesity and insulin resistance at a young age, and then with aging, progressively develop hyperglycemia. This hyperglycemia is associated with impaired pancreatic beta-cell function, loss of pancreatic beta-cell mass, and decreased responsiveness of liver and extrahepatic tissues to the actions of insulin and glucose.

The ZDF model system was chosen by investigators at the Hebrew University of Jerusalem (Israel) to elucidate the underlying mechanisms linking inflammatory events elicited in the brain during oxidative stress and diabetes.

The investigators monitored the anti-inflammatory effects of the thioredoxin mimetic (TxM) peptides, Ac-Cys-Pro-Cys-amide (CB3) and Ac-Cys-Gly-Pro-Cys-amide (CB4) in the brains of ZDF rats and in an in vitro culture system based on human neuroblastoma SH-5HY5 cells. Thioredoxins are proteins that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange. They are found in nearly all known organisms and are essential for life in mammals.

Results published in the January 9, 2014, online edition of the journal Redox Biology revealed that despite high glucose levels in the blood of the ZDF rats, the TXM peptide CB3 significantly reduced the activity of proapoptotic MAPK kinases and retarded premature brain cell death. These results indicated that the CB3 was able to cross the blood-brain barrier and improve the condition of the brain cells by inhibiting various inflammatory processes. Furthermore, CB3 prevented apoptosis in human neuroblastoma SH-SY5Y cells.

Senior author Dr. Daphne Atlas, professor of neurochemistry at the Hebrew University of Jerusalem, said, "This study paves the way for preventive treatment of damages caused by high sugar levels, and for reducing the risk of dementia and Alzheimer's disease in diabetics or people with elevated blood sugar levels. Following the successful animal testing of the molecule we developed, we hope to explore its potential benefit for treating cognitive and memory impairments caused by diabetes on humans.”

Use of the CB3 molecule has been protected by a patent registered by the Yissum Research Development Company, the technology transfer arm of the Hebrew University of Jerusalem.

Related Links:

Hebrew University of Jerusalem 



Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.