Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Nanoparticle Therapy Reduces Plaque Inflammation and Lowers Risk of Heart Attack or Stroke

By BiotechDaily International staff writers
Posted on 06 Feb 2014
Image: A novel HDL nanoparticle (red) loaded with a statin drug, specifically targets and locally treats inflammatory macrophage cells (green) hiding inside high-risk plaque within blood vessels (Photo courtesy of Mount Sinai Medical Center).
Image: A novel HDL nanoparticle (red) loaded with a statin drug, specifically targets and locally treats inflammatory macrophage cells (green) hiding inside high-risk plaque within blood vessels (Photo courtesy of Mount Sinai Medical Center).
Reconstituted HDL (high-density lipoprotein) nanoparticles were used to transport inflammation-retarding statins to atherosclerotic plaques where the drug acted to reduce arterial blockage that could cause heart attack or stroke.

Inflammation is a key feature of atherosclerosis and a target for therapy. While statins are known to have potent anti-inflammatory properties, they cannot be exploited fully as an oral statin therapy due to low systemic bioavailability.

Investigators at Mount Sinai School of Medicine (New York, NY, USA) sought to concentrate the anti-inflammatory benefits of statins by incorporating them into nanoparticles that would accumulate at sites of inflammation within the blood vessels. For this purpose, they designed an injectable reconstituted high-density lipoprotein (rHDL) nanoparticle carrier vehicle capable of delivering statins directly to atherosclerotic plaques.

They reported in the January 20, 2014, online edition of the journal Nature Communications that they had initially demonstrated the anti-inflammatory effect of statin-rHDL in vitro and showed that this effect was mediated through the inhibition of the mevalonate pathway. They also applied statin-rHDL nanoparticles in vivo in an apolipoprotein E-knockout mouse model of atherosclerosis and showed that the nanoparticles accumulated in atherosclerotic lesions in which they directly affected plaque macrophages. Finally, they demonstrated that a three-month low-dose statin-rHDL treatment regimen inhibited plaque inflammation progression, while a one-week high-dose regimen markedly decreased inflammation in advanced atherosclerotic plaques.

“Not only could the HDL nanotherapy potentially avert repeat heart attacks, it may also have the power to reduce recurrent strokes caused by clots in brain arteries, ” said senior author, Dr. Willem Mulder, associate professor of radiology at Mount Sinai School of Medicine. “We envision that a safe and effective HDL nanotherapy could substantially lower cardiovascular events during the critical period of vulnerability after a heart attack or stroke. While we have much more to do to confirm clinical benefit in patients, our study shows how this nanotherapy functions biologically, and how this novel concept could potentially also work in the clinical setting to solve a critical problem. This nanotherapy would be the first of its kind.”

The optimum use for HDL-statin nanotherapy would be by injection following treatment of an arterial clot. The HDL nanoparticle would deliver the statin directly to macrophages that are driving the inflammatory response. “This could potentially and very rapidly stabilize a dangerous situation,” said Dr. Mulder. “In addition, after discharge, patients would continue to use their oral statins to control LDL in their blood.”

Related Links:

Mount Sinai School of Medicine



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel
Image: Induced pluripotent stem (iPS) cells, which act very much like embryonic stem cells, are shown growing into heart cells (blue) and nerve cells (green) (Photo courtesy of Gladstone Institutes/Chris Goodfellow).

Methodology Devised to Improve Stem Cell Reprogramming

In a study that provides scientists with a critical new determination of stem cell development and its role in disease, researchers have established a first-of-its-kind approach that outlines the stages... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.